
 

 

 

UNIVERSIDADE DE SÃO PAULO 

ESCOLA DE ENGENHARIA DE SÃO CARLOS 

 

 

 

 

 

 

 

ANDRÉ ROMÃO NASCIMENTO 

 

 

 

 

 

Estudo de caso: clusterização hierárquica de rugosidade em superfícies 

nanotexturizadas em implantes dentários 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

São Carlos 

2021 

  



 

 

 

  



 

 

 

ANDRÉ ROMÃO NASCIMENTO 

 

 

 

 

 

 

 

 

 

Estudo de caso: clusterização hierárquica de rugosidade em superfícies 

nanotexturizadas em implantes dentários 

 

 

 

 

 

Monografia apresentada ao Curso de Engenharia Mecânica, da 

Escola de Engenharia de São Carlos da Universidade de São 

Paulo, como parte dos requisitos para obtenção do título de 

Engenheiro Mecânico. 

Orientadora: Profa. Dra. Luciana Montanari 

 

 

 

 

 

 

 

 

 

 

 

São Carlos 

2021 

  



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR 
QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO 
E PESQUISA, DESDE QUE CITADA A FONTE. 

 
 
 
 
 
 
 
 
 
 

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da EESC/USP 
com os dados inseridos pelo(a) autor(a). 

Eduardo Graziosi Silva - CRB - 8/8907 

 

  

 

Nascimento, André Romão 

N244e  Estudo de caso: clusterização hierárquica de 

rugosidade em superfícies nanotexturizadas em implantes 
dentários / André Romão Nascimento; orientador Luciana 

Montanari. São Carlos, 2021. 

 

Monografia (Graduação em Engenharia Mecânica) -- 

Escola de Engenharia de São Carlos da Universidade de 

São Paulo, 2021. 

 

1. Aprendizado de Máquina. 2. Agrupamento 

Hierárquico. 3. Análise de Componentes Principais. 4. 

Estruturas Periódicas Induzidas por Laser. I. Título. 



 

 

 

FOLHA DE AVALIAÇÃO 

 
 

Candidato: André Romão Nascimento 
 

Título: Estudo de caso: clusterização hierárquica de rugosidade em 
superfícies nanotexturizadas em implantes dentários 

 

 
Trabalho de Conclusão de Curso apresentado à 

Escola de Engenharia de São Carlos da 
Universidade de São Paulo 

Curso de Engenharia Mecânica 

 
 

BANCA EXAMINADORA 

 

 
Profa. Dra. Luciana Montanari 
(Orientadora) 

 
Nota atribuída: 10 (dez) 

 

 
Prof. Tit. Jaime Gilberto Duduch 
Nota atribuída: 10 (dez) 

 

 
 

 
Eng. Assoc. Alessandro Roger Rodrigues 
Nota atribuída: 10 (dez) 

 

 

 
Média: 10 (dez) 

Resultado: aprovado 

Data: 30/4/2021. 

Este trabalho tem condições de ser hospedado no Portal Digital da Biblioteca da EESC 

SIM x NÃO □ Visto da orientadora     
 

Observação: Após correções indicadas pela banca. 

 

  



 

 

 

  



 

 

 

DEDICATÓRIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

À minha família pela compreensão, 

carinho e apoio incansável. 

  



 

 

 

  



 

 

 

AGRADECIMENTOS 

 

Aos meus pais, Cláudio e Marinalda, e à minha irmã Fernanda, pelo amor, carinho e apoio 

incondicionais que me deram forças durante a realização deste trabalho. 

 

Ao Dr.-Ing. David Domingos pela oportunidade de estágio em um dos mais renomados 

institutos de desenvolvimento de tecnologia do mundo, o Instituto Fraunhofer IPK, em Berlim.  

 

Ao M.Sc. Luiz Guilherme De Souza Schweitzer pela instrução, aconselhamento, compreensão 

e suporte durante o tempo de estágio e períodos subsequentes. 

 

Ao M.Sc. Peter Schneider pela companhia e conversas durante o período de estágio. 

 

Aos meus colegas de curso, pelo convívio, parceria nos desafios apresentados ao longo dos 

anos e amizade, que me permitiram crescer não somente enquanto pessoa, mas como 

profissional. 

 

À professora Luciana Montanari pela atenção, disposição e orientação na elaboração do 

trabalho. 

 

  



 

 

 

RESUMO 
 

NASCIMENTO, A. R.  Estudo de caso: clusterização hierárquica de rugosidade em superfícies 

nanotexturizadas em implantes dentários.   2021.  73 f.  Monografia (Trabalho de Conclusão de 

Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021. 

 

A proposta do trabalho é a aplicação de um algoritmo de aprendizado de máquina não-

supervisionado, mais especificamente a clusterização hierárquica (também conhecido como 

agrupamento hierárquico), em medidas de rugosidade de corpos de prova nanotexturizados 

através da tecnologia LIPSS (estruturas periódicas induzidas por laser; no inglês, Laser Induced 

Periodic Surface Structures), usados no estudo de impacto na aderência bacteriana e criação de 

biofilme de implantes dentários. Tais processos biológicos dão início à colonização de bactérias 

e são a principal fonte de inflamações e infecções que podem levar a falência do implante. A 

estatística tradicional é o principal metódo utilizado para embasar as análises quantitativas e 

qualitativas da metodologia científica. Os algoritmos de aprendizado de máquina oferecem uma 

nova perspectiva de análise de dados. Enquanto métodos supervisionados buscam uma variável 

resposta, os não-supervisionados possuem o objetivo de identificar padrões nos dados de forma 

holística. A análise de componentes principais, um método de redução de dimensionalidade, 

torna possível a geração de gráficos de dispersão em duas e três dimensões que auxiliam a 

visualização e análise qualitativa dos dados. Os algortimos foram implementados em linguagem 

Python. Conclui-se evidenciando a nova perspectiva que os métodos de aprendizado de 

máquina trazem ao problema exposto em comparação aos métodos estatísticos tradicionais e, 

de maneira geral, ressalta-se a importância do desenvolvimento e uso de ferramentas de 

programação para o engenheiro contemporâneo. 

 

Palavras-chave: Aprendizado de Máquina, Agrupamento Hierárquico, Análise de Componentes 

Principais, Estruturas Periódicas Induzidas por Laser.  



 

 

 

  



 

 

 

ABSTRACT 

 

NASCIMENTO, A. R.  Study case: hierarchical clustering of roughness in nanotextured 

surfaces in dental implants.   2021.  73 f.  Monografia (Trabalho de Conclusão de Curso) – 

Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021. 

 

The projects' purpose is to implement a non-supervised machine learning algorithm, more 

specifically hierarchical clustering, on the roughness measures of test specimens nanotextured 

through laser induced periodic surface structures (LIPSS) technology, used to study the impact 

on bacterial adherence and biofilm formation on the abutment surface of dental implants. These 

biological processes trigger bacterial colonization and are the main source of inflammation and 

infection that can lead to the dental implant failure. Traditional statistics’ quantitative and 

qualitative analysis are commonly used to support the scientific method. Machine Learning 

algorithms offer a new perspective in data analysis. Whereas supervised learning algorithms 

focus on a finding a response variable, the non-supervised techniques aim at holistically 

identifying patterns in the data. The principal component analysis, a dimensionality reduction 

method, enable the generation of scatterplots in two and three dimensions, which assists the 

visualization and qualitative assessment of data. The algorithms were implemented in Python 

programming language. This study emphasizes the importance of programming skills 

development for the modern engineer as an enabler of new perspectives in data analysis with 

machine learning algorithms and traditional statistics. 

 

Keywords: Machine Learning, Hierarchical Clustering, Principal Component Analysis, Laser 

Induced Periodic Surface Structures. 
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1 INTRODUÇÃO 

 

O presente trabalho é um estudo de caso com o intuito de explorar as aplicações de 

métodos de aprendizado de máquinas em estruturas periódicas induzidas por laser para geração 

de nanoestruturas na superfície do pilar do dente de implantes dentários.  

Historicamente os esforços tecnológicos focaram em fazer tal superfície o menos rugosa 

possível, com o objetivo de minimizar a aderência bacteriana. A nova tecnologia de laser 

permite explorar a topografia da superfície em uma escala nanométrica, criando-se estruturas 

organizadas.  

Análises de rugosidade de superfícies que utilizam a estatística tradicional dão 

embasamento ao método científico. A proposta do trabalho é explorar uma nova perspectiva de 

análise de dados, comparando-se os métodos tradicionais frente à algoritmos de aprendizado de 

máquina, mais especificamente, clusterização hierárquica e análise de componentes principais. 

1.1 Objetivos 

Tradicionalmente são feitas análises estatísticas focadas em caracterizar a rugosidade de 

superfícies, correlacioná-las com os resultados biológicos e tirar conclusões robustamente 

embasadas, garantindo-se a replicabilidade de resultados. O desafio proposto é o estudo e 

aplicação de algoritmos de aprendizado de máquina, mais especificamente técnicas de 

clustering, com o objetivo de evidenciar as novas perspectivas de análise de dados 

possibilitadas pela redução de dimensionalidade dos atributos, que permite geração de 

visualizações em duas e três dimensões, e pela clusterização hierárquica, que agrupa os corpos 

de prova levando-se em consideração uma visão holística de seus valores mensurados. 

Vale ressaltar que as técnicas de aprendizado de máquina são realizadas paralelamente 

às análises estatísticas tradicionais e apresentam-se como aliadas, e não substitutas, dos métodos 

já consolidados.  

Conclui-se, evidenciando a versatilidade e abrangência dos modelos de aprendizado de 

máquina, a importância cada vez maior do desenvolvimento de habilidades de programação 

para o engenheiro contemporâneo e a importância do conhecimento técnico que torna possível 

o estudo enquanto método científico, garantindo a confiabilidade de resultados. 

Assim, este trabalho tem por objetivo geral apresentar uma aplicação de clusterização 

hierárquica de rugosidade em superfícies nanotexturizadas em implantes dentários atualmente 

disponíveis no mercado odontológico. 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 Implantes Dentários no Contexto Biológico 

2.1.1 Implantes Dentários  

A perda de elementos dentais constitui um fator de grande impacto na vida de uma 

pessoa, tanto do ponto de vista estético, quanto em relação às consequências decorrentes da 

falta de dentes, como problemas na mastigação, aceitação social, autoestima, dentre outros. A 

utilização de implantes dentais com integração óssea tornou-se um método confiável e 

previsível de substituir dentes perdidos a fim de melhorar a qualidade de vida dos pacientes. 

Cada vez mais tem ocorrido concentração de esforços para melhorar ainda mais o conforto do 

tratamento de implantes do paciente, minimizando o desconforto pré e pós-cirúrgico, 

maximizando a estética e melhorando o sucesso a longo prazo dos implantes (MENASSA et 

al., 2014). 

São chamados de implantes dentários os elementos aloplásticos (substâncias inertes, 

estranhas ao organismo humano) alojadas no tecido ósseo completo ou abaixo do periósteo, 

para preservar dentes naturais ou substituir dentes faltantes. A técnica cirúrgica para a 

realização dos implantes sofreu importantes alterações ao longo dos anos, principalmente com 

o desenvolvimento de tecnologias que permitem a modelagem em 3 dimensões da estrutura 

óssea, permitindo assim uma menor morbidade e melhor recuperação do paciente, além de 

aumentar a possibilidade de sucesso do implante (XUEREB et al., 2015). A Figura 1 mostra a 

estrutura de um implante. 

Figura 1 - Partes de um implante dental. 

 

Fonte: RC Odontologia (s/d). 
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Os implantes dentários produziram resultados satisfatórios em casos nos quais o 

tratamento por meio da reconstrução completa da boca foi anteriormente difícil. Uma prótese 

bem elaborada de implantes dentários restaura a função de mastigação, possui biomecânica e 

estética superiores e facilita cuidados de longa duração eficientes. A boa elaboração de uma 

prótese de implante dentário baseia-se na colocação apropriada do implante, levando-se em 

consideração a importância na colocação, ângulo e direção do implante (SIMONIS et al., 2010). 

Para que estes objetivos sejam alcançados, é preciso que a colocação do implante seja planejada 

de forma multidisciplinar, de modo que o resultado final seja vislumbrado (BERNARDES et 

al., 2006). 

A descoberta da capacidade de um osso integrar estruturas exógenas, chamada de 

osseointegração, foi descrita primeiramente pelo professor suíço Per-Ingvar Brånemark e sua 

equipe, em 1965 (MARTINS, 2011), ao observarem em seus experimentos que o titânio se 

integrava perfeitamente ao osso de coelhos, sem haver rejeição, e serviu como base para o 

desenvolvimento dos implantes dentários modernos. A evolução da implantologia oral por meio 

da pesquisa experimental e clínica possibilitou o desenvolvimento de técnicas cirúrgicas e 

próteses que melhoraram as expectativas de sucesso entre os pacientes (DOMÍNGUEZ et al., 

2013). 

A colocação dos implantes simplifica a reabilitação, especialmente nos casos de 

reabsorção mandibular completa desdentada, tão difícil de resolver por técnicas convencionais. 

E é graças à osseointegração que os problemas de estética, retenção, suporte e estabilidade da 

prótese são resolvidos. Esta terceira dentição, como alguns autores denominam, resulta da 

integração óssea dos implantes e do bom manejo dos tecidos moles (TEIXEIRA, 2010).  

Ao longo dos anos os implantes dentários evoluíram, propiciando assim o 

desenvolvimento de técnicas cirúrgicas avançadas, que possibilitam uma rápida recuperação do 

paciente. Apesar da biocompatibilidade do titânio, uma modulação positiva dos processos 

biológicos é de alguma forma limitada porque o titânio por si só é incapaz de induzir a aposição 

óssea (osteoindução). Portanto, pesquisas recentes têm se concentrado em melhorar os 

tratamentos de superfície para promover a integração precoce, reduzindo assim o tempo total 

de tratamento necessário (TEIXEIRA, 2010). 

2.1.2 Peri-implantite 

Os tecidos peri-implantares saudáveis desempenham um papel importante como 

barreira biológica para alguns dos possíveis agentes causadores da doença peri-implantar. Se 
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realizar uma comparação entre o dente e o implante, fica claro o entendimento que existem 

mecanismos de proteção específicos no dente, como o epitélio juncional, o tecido conjuntivo e 

os elementos celulares do sistema imunológico. O epitélio e a interface entre o tecido conjuntivo 

supralveolar e a superfície de titânio de um implante são diferentes da interface homóloga do 

complexo gengivo-dentário. A união do epitélio com a superfície do implante é do tipo 

hemidesmossomal, como a do tecido conjuntivo, mas o arranjo de suas fibras é 

predominantemente longitudinal em relação à superfície do implante e não perpendicular como 

ocorre no dente natural (SCHWARZ et al., 2018). 

A mucosite peri-implantar corresponde em termos básicos à gengivite. Foi definida 

como uma reação inflamatória reversível na mucosa peri-implantar em torno de um implante 

dentário osseointegrado. A mucosa peri-implantar é uma barreira biológica de 3 a 4 mm que 

protege a zona de osseointegração de fatores liberados da placa e da cavidade oral. Sua 

superfície externa é revestida por epitélio oral estratificado queratinizado contínuo com um 

epitélio juncional que está preso à superfície do implante por uma lâmina basal e por 

hemidesmossomos. O epitélio juncional tem 2 mm de comprimento e é separado do osso 

alveolar por apenas 1 a 2 mm de tecido conjuntivo rico em colágeno semelhante a uma cicatriz, 

com menos vasos sanguíneos e fibroblastos do que a gengiva ao redor dos dentes. O tecido 

conjuntivo próximo à superfície do implante constrói a vedação mucosa, onde se forma a 

resposta inflamatória à colonização microbiológica da superfície do implante (OLIVEIRA et 

al., 2015). 

A peri-implantite corresponde, basicamente, à periodontite do adulto. Foi definida como 

uma reação inflamatória associada à perda do osso de suporte ao redor do implante dentário. 

Existem poucos relatos sobre os tecidos peri-implantar de implantes malsucedido em humanos. 

Em comparação com os tecidos periodontais, o tecido peri-implantar tem uma capacidade 

limitada para resolver lesões progressivas associadas às plaquetas em modelos animais 

experimentais. Grandes lesões inflamatórias foram encontradas na mucosa peri-implantar e se 

estendem para o osso alveolar provocando destruição óssea avançada mediada (NOGUEIRA-

FILHO et al., 2011). 

As lesões de peri-implantite são frequentemente assintomáticas e geralmente detectadas 

em consultas de rotina por sangramento à sondagem, que está sempre presente na doença peri-

implantar (exceto em alguns fumantes). Outros sinais clínicos da doença incluem supuração, 

aumento da profundidade de sondagem em relação à linha de base, recessão da mucosa, 

drenagem dos seios da face e edema da mucosa peri-implantar. Se não for diagnosticado e 



24 

 

 

administrado de forma eficaz, a doença peri-implantar pode resultar na perda completa da 

integração e perda do implante (OLIVEIRA et al., 2015). 

Figura 2 - Lesões peri-implantares. 

 

Fonte: Cordeiro (2009). 

O desenho do implante é um fator importante no início e no desenvolvimento da peri-

implantite. Um sistema de implante específico é descrito de acordo com sua morfologia 

macroscópica, sua microssuperfície e a qualidade do ajuste de seus componentes. A rugosidade 

da superfície de um implante facilita a aderência da placa bacteriana quando esta é exposta ao 

meio bucal, embora não haja diferenças quanto ao tipo de superfície e a seleção de espécies 

bacterianas agressivas colonizadoras (MOMBELLI et al., 2012). 

O desencontro entre os componentes que compõem um sistema implante-prótese pode 

favorecer a retenção da placa bacteriana, além de permitir a passagem de microrganismos para 

o pilar transepitelial. Isso é possível porque, conforme descrito no estudo de Binon et al. (1992) 

o erro médio de ajuste entre o abutment (também conhecido como pilar do implante, da prótese 

ou do dente) e o implante mostra discrepâncias entre 20 e 49 micrômetros entre os componentes 

dos diferentes tipos de implantes comercializados atualmente. Este espaço fornece uma porta 

de entrada para microrganismos na cavidade oral que têm menos de 10 micrômetros de 

tamanho. 

A morfologia externa do implante de titânio parece ser de menor importância, desde que 

tenha sido instalado corretamente. Deve-se levar em consideração a influência do desenho 

macroscópico, no que diz respeito ao padrão de transmissão das forças para o osso, que pode 

favorecer a sobrecarga mecânica em algum ponto, principalmente na área de união entre o osso 

e o colar cervical implantar. A perda óssea neste ponto biomecanicamente fraco facilita a 
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formação de um defeito ósseo neste nível e sua subsequente contaminação (ALGRAFEE et al., 

2012). 

Os fenômenos de corrosão que podem ocorrer quando uma estrutura de metal não nobre 

é fixada a um implante de titânio também são apontados como causa de peri-implantite. Nestes 

casos, verificou-se um aumento do número de macrófagos nos tecidos peri-implantares, o que 

favoreceria a reabsorção óssea inicial por causas não infecciosas (OLIVEIRA et al., 2015). 

2.1.3 Aderência Bacteriana 

O biofilme é descrito como uma comunidade microbiana relativamente indefinível, 

associada à superfície do dente ou a qualquer material rígido que não se solta. Biofilmes são 

onipresentes e se formam em praticamente todas as superfícies imersas em ambiente aquoso 

natural, por exemplo, canos de água, tecido vivo, superfície de dente, dispositivos médicos 

implantados, implantes dentários, etc. Infecções mediadas por adesão de biofilme mais 

comumente vistas são no coração implantado, válvulas, cateteres venosos, próteses vasculares, 

dispositivos de fixação de fraturas, implantes mamários, lentes intraoculares e implantes 

dentários.  

Biofilmes consistem em uma ou mais comunidades de microrganismos distribuídos não 

aleatoriamente em um glicocálice. Esses biofilmes permitem que os microrganismos se colem 

e se multipliquem nas superfícies. As interações entre as várias espécies bacterianas que 

residem e crescem no biofilme ocorrem por troca metabólica, contato físico, troca de 

informações genéticas, sinalização de informações mediadas por moléculas (BUSSHER et al., 

2010).  

O biofilme formado na superfície do dente é denominado placa dentária. As bactérias 

que proliferam na placa dentária formam os principais fatores etiológicos para a maioria das 

doenças dentárias, por exemplo, cárie, gengivite, periodontite e peri-implantite. O ataque 

microbiano foi citado como a principal causa da falha do implante dentário. Os biofilmes são 

responsáveis pela associação de cerca de 65% das doenças, incluindo peri-implantite e 

periodontite (SAKKA et al., 2012).  

A evidência microbiológica da primeira infecção peri-implantar relacionada ao biofilme 

humano vem do estudo em amostras de placa coletadas da maior parte apical de 17 implantes 

doentes. Implantes com bolsas de sondagem mais profundas mostraram uma presença de menor 

número de cocóides e mais níveis de espiroquetas (RAMS, 1983).  
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A formação de biofilme em implantes dentários e nos dentes segue um padrão 

semelhante de colonização microbiana. A formação de biofilme ao redor dos dentes naturais 

ocorre em minutos e as espécies específicas começam a colonizar em 2 a 6 horas. A razão 

atribuída possivelmente reside no fato de que as superfícies dentais limpas provavelmente têm 

restos de microbiota não aderida que podem se multiplicar imediatamente e fornecer uma 

superfície favorável para a fixação dos colonizadores tardios (LEE; WANG, 2010).   

As superfícies imaculadas dos implantes não possuem a microbiota desejada e exigem 

que os primeiros colonizadores preparem o terreno para o desenvolvimento das comunidades 

complexas (LI et al., 2004). A película começa a se formar na superfície do implante 30 minutos 

após a exposição do implante na cavidade oral. A película adquirida nos implantes dentários, 

devido à sua menor capacidade de absorção de albumina, causa uma baixa formação de placa 

ao redor dos implantes. 

Os primeiros colonizadores são predominantemente cocos Gram-positivos, bastonetes 

e espécies de actinomices. Os patógenos periodontais que colonizam os estreptococos (P. 

gingivalis, P. intermedia, etc) são os microrganismos causadores responsáveis pela peri-

implantite e periodontite (FURST et al., 2007). 

2.2 Processos de Tratamento de Superfícies para Implantes 

Um parâmetro importante para o sucesso clínico dos implantes dentários é a formação 

do contato direto entre o implante e o osso circundante. A qualidade da interface osso-implante 

é diretamente influenciada pela rugosidade da superfície do implante que, desde o início da 

década de 1980, tem sido identificada como um dos seis fatores que são particularmente 

importantes para a incorporação do implante no osso (NOVAES JR et al., 2010). 

Tanto a morfologia quanto a rugosidade da superfície influenciam a proliferação e 

diferenciação celular, a síntese da matriz extracelular, os fatores de produção locais e até mesmo 

a forma celular. Além disso, a forma da célula regula seu crescimento, expressão gênica, 

secreção de proteínas, diferenciação e apoptose. Portanto, a aderência dos osteoblastos nas 

superfícies dos implantes não é suficiente para a realização da osseointegração, muito menos 

para melhorá-la, mas é necessária, principalmente, para permitir que a célula receba os sinais 

para induzir a sua proliferação. Além disso, a rugosidade não só facilita a retenção das células 

osteogênicas, mas também permite que elas migrem para a superfície do implante por ósseo-

condutividade.  
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A formação óssea mais rápida e forte proporciona maior estabilidade durante o processo 

de reparo, permitindo carregamento do implante ainda mais rápido. As superfícies dos 

implantes orais apresentam estruturas mensuráveis em escala milímétrica, micrométrica e 

nanométrica. A forma como essas estruturas influenciam o reparo tem sido tema de várias 

publicações e estudos nos últimos anos (ALLA et al., 2011). 

Até agora, as certezas têm se limitado à influência do desenho do implante e da 

rugosidade da superfície na escala micrométrica. Um desenho em forma de parafuso e uma 

superfície com rugosidade média (Sa) de 1 a 2 µm apresentaram melhores resultados. Estudos 

têm demonstrado que implantes de titânio com rugosidade adequada podem melhorar o contato 

osso-implante, além de aumentar os valores de torque de remoção. Por outro lado, o aumento 

da rugosidade superficial ao nível de superfícies tratadas com titânio na forma de plasma com 

Sa acima de 2 µm, provoca uma resposta óssea prejudicada e não reforçada (JEMAT et al., 

2015). 

Como resultado, nos últimos 20 anos, muitos sistemas de implantes com diferentes 

topografias de superfície foram introduzidos. Os implantes orais são um exemplo da estreita 

ligação entre a pesquisa e a indústria, uma vez que as descobertas laboratoriais frequentemente 

se tornam aplicações clínicas. No entanto, qualquer alteração na morfologia do implante, ou 

seja, no seu desenho, provoca alterações na topografia ao nível micrométrico e vice-versa. Da 

mesma forma, mudanças químicas causam mudanças físicas e vice-versa.  

Existem muitos tipos de tratamentos de superfície no mercado. Em geral, todos buscam 

alterar a rugosidade da superfície previamente usinada, elevando-a a níveis considerados 

ótimos. Uma combinação de jateamento, seguida de condicionamento ácido, tem sido uma 

técnica comumente usada para tratamento de superfície nos últimos anos. 

O principal motivo da combinação de métodos é que, hipoteticamente, o jateamento 

atinge uma rugosidade e fixação mecânica ideais, enquanto o condicionamento ácido suaviza 

os picos e pode adicionar um componente de alta frequência à superfície do implante, com 

potencial importância para a aderência de proteínas, que é considerada importante durante o 

processo inicial de consolidação óssea (NOVAES JR et al., 2010). 

As características superficiais obtidas com a deformação por jateamento dependem do 

tipo de partícula utilizada, sua dureza, tamanho e velocidade de impacto. O processo geralmente 

realizado com partículas de óxido de titânio (TiO2) ou alumina (Al2O3) permite um bom 

controle do tamanho das microcavidades resultantes.  

Algumas partículas restantes podem, no entanto, ficar embutidas e contaminar a 

superfície do implante. O ataque ácido remove algumas camadas atômicas da superfície 
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deformada, parte da tensão superficial residual, e reduz a possibilidade de contaminação da 

superfície por partículas que sobraram do processo de jateamento, pois também atua na limpeza 

da superfície. Esses processos criam microcavidades que se sobrepõem à superfície rugosa pré-

jateada.  

Cada fabricante tem seu próprio método de condicionamento ácido com relação à 

temperatura, concentração de ácidos e tempo de exposição. Em geral, ocorre o ataque ácido 

duplo, que é realizado mergulhando primeiro os implantes em soluções de HCl + H2SO4, HNO3 

+ HF ou HNO3. Em seguida, o implante é novamente imerso em solução aquosa de HNO3 para 

estabilizar a camada de óxido de titânio (BAUER et al., 2013). 

A versatilidade desse tipo de tratamento permite uma ampla variação nos procedimentos 

para se obter a rugosidade desejada. Por outro lado, esta característica pode produzir superfícies 

significativamente diferentes. Consequentemente, é muito importante caracterizar as 

superfícies para obter os valores previstos pelos tratamentos propostos. Segundo Wennerberg 

e Albrektsson (2000), um perfilômetro interferométrico é uma forma segura e eficaz de medir 

a rugosidade de implantes em formato de parafuso. 

2.2.1 Procedimento atual 

Diferentes metodologias têm sido aplicadas para o tratamento da superfície de 

implantes. Difusão plasma de hidroxiapatita e titânio formam uma camada sobre o implante, 

cuja rugosidade depende do tamanho das partículas. Entretanto proporciona superfícies com 

rugosidade grande, o que aumenta a possibilidade de contaminação bacteriana (GALLI et al., 

2013). 

O jateamento por partículas de óxido de alumínio ou titânio resultam impressões 

irregulares. As partículas não devem aderir ao implante, apenas criar as rugosidades, que 

dependem do tamanho das partículas, da pressão do disparador e do tempo de disparo. Por ser 

insolúvel em ácido, a remoção das partículas de óxido de alumínio é difícil, o que pode fazer 

com que partículas continuem aderidas e interfiram no processo de osseointegração.  

Outro fator que interfere na escolha deste tipo de tratamento reside no fato de que ele 

proporciona uma superfície com características químicas muito heterogêneas, que interferem 

na resistência da superfície do implante à corrosão (LE GUEHENNEC et al., 2007). 

O tratamento por jateamento seguido de tratamento com ácido combina a 

macrotexturização proporcionada pelo jateamento, com a microtexturização proporcionada 

pelo ataque ácido. A textura obtida desta forma é bastante homogênea, fator este que auxilia no 
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processo de integração do implante. O jateamento, neste caso, é feito com areia, seguido por 

tratamento com ácido. A estabilidade secundária destes implantes se mostrou maior do que em 

outros tratamentos (GEHRKE et al., 2011). 

Feixes de laser podem ser usados para modificar a superfície do implante de forma a 

produzir erosões e rugosidade. Por não ter interação nem interferência de nenhum material 

externo, é considerado um tratamento limpo, produzindo rugosidade controlada e alto grau de 

pureza, que garantem uma boa osseointegração. Outra vantagem deste método é que ele permite 

a criação de pontos de textura em locais definidos da superfície. Por não envolver nenhum 

elemento químico, a técnica fica livre da contaminação da camada de óxido de titânio (MALUF 

et al., 2007). 

A nanotexturização consiste na aplicação de uma camada extra de óxido de titânio, 

obtida pela aplicação de potencial elétrico, usado o implante como um anodo. O campo elétrico 

guiado aumenta a espessura da camada de óxido de titânio do implante. A adição de outros 

elementos, como o fosfato, potencializa a osseointegração. A oxidação do implante promove 

modificações em sua superfície que melhoram a adesão e a orientação das células, resultando 

em uma osseointegração mais rápida e eficiente (THAKRAL et al., 2014). 

2.2.2 Laser – LIPSS 

Desde a descoberta de estruturas de superfície periódicas induzidas por laser (LIPSS) 

por Birnbaum em 1965, este tópico evoluiu para uma perenidade científica. Com a ampla 

disponibilidade de pulsos de laser ultracurtos e sua capacidade de gerar estruturas de superfície 

periódicas com dimensões submicrométricas , muitos pesquisadores estudaram seus 

mecanismos de formação em experimentos com pulsos ultrarrápidos para alcançar períodos 

cada vez menores (BONSE et al., 2016). 

Após a irradiação de sólidos com pulsos de laser ultracurtos polarizados linearmente 

(durações de pulso de fs a ps) no ar sob incidência normal, geralmente dois tipos distintos de 

LIPSS são observados, os paralelos e os perpendiculares à orientação de polarização do feixe. 

Para materiais que absorvem fortemente a radiação laser, na maioria dos casos, os chamados 

LIPSS de baixa frequência espacial (LSFL) são observados com uma periodicidade () 

próxima ao comprimento de onda de irradiação (λ) e uma linha de orientação perpendicular à 

direção de polarização do feixe. Em materiais transparentes (dielétricos) LIPSS de alta 

frequência espacial (HSFL) foram relatados com períodos significativamente menores do que 

o comprimento de onda de irradiação (λ) e com orientações paralelas ou perpendiculares à 
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polarização do feixe de laser. Atualmente é geralmente aceito que os LSFL são gerados pela 

interferência do feixe de laser incidente com uma onda eletromagnética de superfície gerada na 

superfície rugosa, que pode incluir a excitação de polarizações de plasma de superfície (BONSE 

et al., 2013). 

LIPSS podem ser geradas tanto em irradiação "estática" de um único ponto de superfície 

ou em processamento "dinâmico" (varredura), onde o feixe de laser e a superfície são movidos 

um em relação ao outro (normalmente a uma velocidade constante v e em forma sinuosa). 

A vantagem óbvia da fabricação de LIPSS é a simplicidade e a robustez do processo, ou seja, 

as nanoestruturas podem ser obtidas de forma confiável em uma única etapa de processo (sem 

contato) em ambiente de ar sem necessidade de vácuo. (BONSE et al., 2013).  

2.3 Análise de Dados 

Esse trabalho utiliza algoritmos de aprendizado de máquina para trazer uma nova 

perspectiva para as análises de dados de rugosidade, diferentemente do que normalmente é 

adotado no modelo tradicional de análise de dados, com o emprego de tabelas e elaboração de 

gráficos como o histograma, por exemplo. Dentro desse ambiente de machine learning 

(aprendizado de máquina), os algoritmos aprendem por experiência e incrementam seu 

desempenho com o passar do tempo. Essa abordagem normalmente é empregada para a 

detecção de padrões em dados, tanto para a automatização de tarefas complexas ou para efetuar 

predições (INAZAWA et al, 2019).  

De acordo com Costa Filho et al (2019), o aprendizado de máquina (AM) é um campo 

da inteligência artificial direcionado para o desenvolvimento de sistemas capazes de instigar 

hipóteses ou aproximar funções a partir de experiências acumuladas em problemas 

anteriormente tratados (COSTA FILHO et al, 2019).  

Para os autores, as decisões adotadas por algoritmos de AM têm como base o 

aprendizado indutivo, que pode ser dividido em duas classes: (i) supervisionado, quando o 

propósito é a resolução de problemas de regressão ou de classificação, e (ii) não supervisionado, 

quando a tarefa é de agrupamento (clustering) ou associação (COSTA FILHO et al, 2019). 

Esses e outros conceitos adotados em Estatística são apresentados nos subcapítulos 2.3.1 e 

2.3.2. 
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2.3.1 Estatística  

Na forma mais comum e praticada de análise, a organização dos dados é realizada por 

meio do agrupamento em tabelas de frequência que se mostra uma maneira muito eficaz para 

realizar a análise de um conjunto de dados. Sob a forma de agrupamentos, os dados também 

podem ser representados graficamente com a utilização de histogramas e diagramas de caixa 

(boxplot) (DOMINGUES, DOMINGUES, 2010).  

Para Behr et al (2008), o histograma é uma ferramenta com uma exterioridade próxima 

ao diagrama de Pareto, que contempla a medição de dados (tempo, distância, temperatura, 

velocidade, altura, entre outros), retratando sua distribuição conforme a frequência em que 

aparecem. Esta técnica mostra-se interessante, pois apresenta de modo visual a concentração 

dos dados identificados, permitindo a análise de suas variações no decorrer do tempo. 

A montagem do histograma é fácil e apoia-se em conceitos estatísticos, como: 

a. conhecer o tamanho da população pesquisada; 

b. definir a amplitude da população, isto é, conhecer a diferença entre os 

extremos, maior e menor, presente na população; 

c. separar a amplitude em classes ou categorias. Quanto maior o número de 

classes dos dados, mais precisa torna-se a análise, porém recomenda-se que seja um 

número inferior a 12 para não dificultar a análise; 

d. estabelecer o limite e o tamanho, com valor inicial e valor determinado para 

saber como ocorrerá a distribuição da população; 

e. elaborar uma tabela da frequência em que os dados estão presentes; 

f. montar o histograma tendo como base a tabela de frequência. 

Vale ressaltar que o histograma traz toda a população analisada e não somente sua região 

perto da média (BERH et al, 2008). 

Já o boxplot, de acordo com Domingues e Domingues (2010), trata-se de um gráfico 

que permite reproduzir a distribuição de um conjunto de dados tendo como base alguns de seus 

parâmetros descritivos, podendo ser a mediana (Q2), o quartil inferior (Q1), o quartil superior 

(Q3) e o intervalo interquartil (IQR = Q3 - Q1). Esse tipo de gráfico é muito útil para a 

comparação de conjuntos de dados diferentes, sendo necessário para isso  que se utilize a mesma 

escala para ambos conjuntos de dados (DOMINGUES, DOMINGUES, 2010). 
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2.3.2 Inteligência Artificial 

De acordo com Mateus et al (2020), inteligência artificial pode ser definida como a 

capacidade de os programas computacionais executarem operações de forma que se possa 

acreditar que estejam imitando os processos de raciocínio humano. Tais processos foram 

agrupados em seis tipos de IA: (1) Aprendizado de máquina, (2) Processamento de linguagem 

natural, (3) Reconhecimento de fala, (4) Reconhecimento de imagens, (5) Robótica e (6) 

Planejamento (MATEUS et al, 2020).  

Figura 3 - Tipos de inteligência artificial agrupados por processos 

Fonte: Mateus et al (2020). 

Com foco no primeiro tipo de IA, o aprendizado de máquina, utilizado neste trabalho,  

engloba o desenvolvimento de algoritmos que possibilitam o sistema aprender com situações 

passadas (dados históricos), identificar padrões por meio de métodos estatísticos, efetuar uma 

determinação ou prognóstico e automaticamente melhorar seu desempenho. No próximo 

subcapítulo este assunto é tratado com mais detalhes.  

2.3.3 Aprendizado de Máquina  

Existem quatro técnicas principais de modelagem de aprendizado de máquina: 

Aprendizado supervisionado, Aprendizado não supervisionado, Aprendizado semi-

supervisionado e Aprendizado por reforço. A Figura 4 apresenta as categorias de aprendizado 

de máquina. (MATEUS et al, 2020) 
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Figura 4 - Técnicas de aprendizado de máquina por categorias 

 

Fonte: Mateus et al (2020). 

De acordo com Mateus et al (2020), a principal diferença entre as técnicas empregadas 

no aprendizado de máquina, especificamente nos casos enquadrados como supervisionado e 

não supervisionado, é o fato de que os algoritmos do aprendizado de máquina supervisionados 

serem praticados em agrupamentos de dados rotulados que direcionam o algoritmo a entender 

quais recursos são relevantes para a solução do problema em questão. Por sua vez, os algoritmos 

não supervisionados são preparados com dados não rotulados e devem estabelecer a relevância 

do recurso por critério próprio, de acordo com os padrões ligados à amostra.  

A aprendizagem supervisionada tem como base dados preparados para treinamento 

quando se conhece o destino de cada registro de um conjunto de dados. Na aprendizagem não 

supervisionada, os algoritmos procuram padrões em registros com características semelhantes, 

comparando os valores dos seus atributos. Esse tipo de aprendizagem (não supervisionada) é 

costumeiramente aplicada em problemas de agrupamento (também conhecidos como 

clusterização) ou na redução da dimensão de conjuntos de dados multivariados (FERNANDES 

et al, 2019). 

Normalmente o aprendizado supervisionado é aplicado para realizar prognóstico sobre 

eventos. Já o aprendizado não supervisionado é empregado, via de regra, para a descrição de 

eventos ainda desconhecidos (MATEUS et al, 2020). 

Para a técnica de aprendizagem semi-supervisionada, os dados obtidos apresentam-se 

como uma composição de dados rotulados e não rotulados. Essa combinação normalmente é 

empregada para desenvolver um modelo específico de classificação dos dados. O método de 

aprendizado por reforço visa usar observações reunidas a partir da interação com o meio 

ambiente para tirar ações que maximizam o ganho ou minimizam o risco. Dessa forma, com o 
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uso deste método, é possível determinar o comportamento ideal que um algoritmo deve 

apresentar dentro de um contexto específico (MATEUS et al., 2020). 

2.3.4 Análise de Componentes Principais 

A análise de componentes principais (do inglês, Principal Component Analysis – PCA) 

é um método de redução de dimensionalidade, mais especificamente, de extração de variáveis. 

Seu objetivo é maximizar a representação da variância dos dados através da geração de M  novas 

direções (M ≤ p) em que os dados serão projetados. Essas novas direções são chamadas 

componentes principais (do inglês, principal components – PC) e são obtidas através da 

aplicação dos conceitos de autovetores e autovalores de álgebra linear sobre a matriz de 

covariância dos dados (GARETH et al., 2013). 

Métodos de redução de dimensionalidade possuem como objetivo reduzir o número total 

de variáveis p (considerando uma matriz n x p) e representar os dados em um conjunto de 

variáveis principais. São muito utilizados em aprendizado de máquina para reduzir tempos de 

processamento, economizar espaço de armazenamento e possibilitar visualizações em duas e 

três dimensões. Eles são dividios em métodos de seleção de variáveis e de extração de variáveis. 

O primeiro componente principal (PC1) é a direção que, ao projetar-se os valores sobre 

ela, maximiza a variância dos dados. O segundo componente principal (PC2) é a direção, 

ortogonal ao PC1, em que há a segunda maior variância dos dados. A Figura 5 traz visualmente 

o conceito. É apresentado, como exemplo, um gráfico de dispersão de população por gastos em 

mídia. A linha cheia representa o PC1, a direção em que há a maior variância de dados, 

perperndicular ao PC1 tem-se o PC2 em linha pontilhada, que é a direção em que há segunda 

maior variância de dados. Neste caso dois componentes principais conseguem representar a 

totalidade da variância dos dados, pois há apenas duas variáveis consideradas. 
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Figura 5 - Exemplificação do conceito de componentes principais 

    

Fonte: Adaptado de GARETH et al (2013). 

2.3.5 Clusterização 

Clustering ou métodos de agrupamento são empregados para separar objetos de dados 

em grupos ou, de outra forma, como uma etapa de pré-processamento para submissão a outros 

algoritmos. São identificados como aprendizado não supervisionado em razão das informações 

do rótulo de classe não estarem presentes (SILVA, 2018). Para o autor, trata-se basicamente de 

colocar em um mesmo grupo objetos similares, de acordo com algum critério, de maneira que 

as características desses objetos do grupo sejam semelhantes entre si e diferentes dos objetos 

dos outros grupos. 

Os métodos de agrupamento podem ser classificados de várias formas, mas basicamente 

são adotadas as seguintes categorias de métodos: hierárquicos, particionais e baseados em 

densidade. Os métodos hierárquicos formam um conjunto de dados em uma estrutura 

hierárquica de acordo com a proximidade dos elementos. Normalmente, os grupos são 

representados por uma árvore que separa a base de dados em subconjuntos menores. Nesta 

representação, um elemento tem a sua representação pela folha da árvore, sendo que a junção 

de todos os elementos apresenta-se representado pela raiz. No método hierárquico é essencial 

determinar uma distância de corte para que sejam identificados os grupos formados. Assim, é 

muito importante ter conhecimento sobre a estrutura dos dados e do objetivo da análise para 

estabelecer o corte que irá separar os grupos. Já os métodos particionais reúnem apenas grupos 

de formato circular ou esférico, enquanto os métodos baseados em densidade têm a capacidade 
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de identificar grupos de formato irregular ou aleatório, além de serem eficientes para encontrar 

distorções (SILVA, 2018).  
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3 MÉTODOS E FERRAMENTAS 

 

As informações referentes aos corpos de provas, sistemas de laser e topografia de 

superfície foram obtidos em (UHLMANN et al., 2019) 

3.1 Corpos de Prova 

Os corpos de prova são discos de titânio com diâmetro de 10mm e espessura de 2mm 

que foram fornecidos pelo fabricante de implantes dentários A.K.TEK MEDIZINTECHNIK 

GMBH, Hagen, Alemanha. Eles foram gerados a partir da liga metálica de Ti-6Al-4V grau 5 

para uso biomédico fornecido por HIGH TECH ALLOYS SONDERWERKSTOFFE GMBH, 

Wuppertal, Alemanha. 

3.2 Sistemas de Laser 

Foram utilizados dois diferentes sistemas para geração da nanotexturização, ambos com 

a mesma fonte de pulsos ultracurtos Talisker-Three, COHERENT, Santa Clara, Estdos Unidos 

da América. Os detalhes técnicos das máquinas utilizadas são apresentados: 

• Máquina de Laser 1: Modelo LMBS 3W-015-xy300z200-IA de 

LASERMIKROTECHNOLOGIE DR. KIEBURG GMBH, Berlim, Alemanha. A 

máquina possui potência média de feixe PL = 3W e diâmetro du = 16µm na posição de 

foco. A terceira harmônica λUV = 355nm foi utilizada. 

• Máquina de Laser 2: Modelo MJ-Series de OXFORD LASERS LTD, Didcot-

Oxford, Reino Unido. A máquina possui potência média de feixe PL = 8W e diâmetro 

du = 16µm na posição de foco. A segunda harmônica λGR = 532nm foi utilizada. 

3.3 Topografia de superfície 

A avaliação quantitativa dos parâmetros de superfície foram obtidas através de 

microscopia de força atômica, utilizando o microscópio NanoWizard II, JPK INSTRUMENTS, 

Berlim, Alemanha. O software livre Gwyddion® foi utilizado para avaliar o perfil das 

superfícies. 

Para o presente estudo foram considerados os seguintes parâmetros de superfície: 

• Ra: Rugosidade aritmética principal de perfil. 

• Rz: Rugosidade de altura máxima de perfil. 
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• Sa: Rugosidade aritmética principal de área. 

• Sz: Rugosidade de altura máxima de área. 

• Ssk: Assimetria de altura da topografia. 

• Sku: Curtose de altura da topografia. 

3.4 Aplicação de Algoritmos 

Todo o código foi escrito em linguagem Python e aplicado utilizando-se o software livre 

Jupyter Notebooks. As principais bibliotecas utilizadas foram: 

• Numpy e Pandas: bibliotecas fundamentais para manipulação geral de dados. 

Numpy opera dados em forma de arrays enquanto Pandas opera em forma de dataframe. 

• Matplotlib e Seaborn: bibliotecas para geração de visualizações (Histogramas, 

Boxplots e Diagramas de Dispersão). 

• Sklearn: contém as funções de normalização e análise de componentes 

principais. 

• Scipy: contém a função de agrupamento hierárquico. 
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4 ANÁLISE DE RESULTADOS E DISCUSSÃO 

 

A fim de demonstrar a utilidade que técnicas de aprendizado de máquina podem oferecer 

ao processo de desenvolvimento de tecnologia serão comparadas duas técnicas de estatística 

descritiva tradicionais, histograma e boxplot, com os métodos de análise dos componentes 

principais e agrupamento hierárquico (clusterização). 

Primeiramente apresenta-se como os dados obtidos são organizados. Há 3 categorias de corpos 

de prova:  

• CP (Referência): Gerados com a mesma tecnologia empregada nos atuais 

implantes dentários; 

• UV–LIPSS: Gerados a partir da tecnologia LIPSS utilizando comprimento de 

onda na faixa dos raios ultravioleta (λUV = 355 nm); 

• GR–LIPSS: Gerados a partir da tecnologia LIPSS utilizando comprimento de 

onda na faixa da luz verde (λGR = 532 nm). 

Para CP foram produzidos 5 corpos de prova, para UV-LIPSS e GR-LIPSS foram 

desenvolvidos 45 corpos de prova em cada categoria, totalizando 95 corpos de prova. Como 

será demonstrado, os corpos de prova CP, por serem oriundos de técnicas de fabricação já 

estabelecidas, apresentam grande estabilidade e pouca variação nos valores de mensuração. 

4.1 Histograma 

O histograma traz graficamente informações sobre a frequência de distribuição das 

medidas em colunas, que estabelecem o limite inferior e o limite superior considerados nos 

intervalos que determinam a coluna. Pode-se, assim, observar se existem concentrações em 

torno de certos valores. 

Observa-se já aqui uma limitação de análise devido a característica de poucos corpos de 

prova disponíveis para medição, especialmente para a categoria de referência (CP). A Figura 6 

apresenta o histograma Ra para as três categorias. 
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Figura 6 - Histograma de Ra nas categorias [nm] 

 

Fonte: Autor (2021). 

O histograma de CP apresenta quatro colunas de distribuição, com apenas duas com 

frequência nos intervalos [0,98 nm, 1,18 nm) e (1,57 nm, 1,77 nm]. No primeiro intervalo 

preenchido existem duas observações e no segundo, três. Quanto a UV-LIPSS e GR-LIPSS, 

por existirem 45 corpos de prova em cada, tem-se oito colunas que resumem a distribuição. Em 

UV pode-se inferir que há dois picos de distribuição e em GR uma ilha.  

A forma apresentada de comparação das categorias apresenta duas principais limitações:  

falta de referência nos eixos para comparação e intervalos de tamanhos diferentes para cada 

categoria. Em CP, a primeira coluna preenchida possui limite inferior de 0,98 nm e a segunda 

limite superior de 1,77 nm. Os intervalos possuem tamanho 0,20 nm. Em UV-LIPSS o limite 

inferior mínimo é 3,26 nm e o superior máximo 20,37 nm, com intervalo de tamanho 2,14 nm. 

Em GR-LIPSS o limite inferior mínimo é 11,60 nm e o superior máximo 34,61 nm, com 

intervalo de 2,88 nm. Para cada medida em cada categoria os limites e tamanhos dos intervalos 

se ajustam à distribuição das medidas que contemplam, o que se torna outro obstáculo na 

obtenção de melhor entendimento e conclusões.  

O histograma é, portanto, pouco esclarecedor quanto à forma da distribuição. Além 

disso, os 3 gráficos resumem a distribuição de apenas uma medida. Considerando 6 medidas e 

3 categorias há um total de 18 possíveis gráficos, o que torna a análise onerosa e pouco 

conclusiva. A Figura 7 apresenta um diagrama dos 18 histogramas possíveis. 
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Figura 7 - Histogramas possíveis considerando 3 categorias e 6 parâmetros 

 
Fonte: Autor (2021). 

Em resumo, considerando o baixo volume de corpos de prova e, portanto, de medidas, 

característica bastante encontrada no âmbito do desenvolvimento de tecnologia, o histograma 

se mostra um método pouco esclarecedor quanto a busca por entandimento a partir de 

comparações. A seguir, são apresentados e analisados os mesmos dados utilizando a 

visualização de boxplot. 
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4.2 Boxplot ou Diagrama de Caixa 

O boxplot oferece uma visualização de dispersão, simetria, máximos e mínimos, 

podendo ainda destacar valores discrepantes em relação aos outros, chamados também de 

outliers. 

Para montar um boxplot são calculadas 5 medidas estatísticas básicas: média, mediana, 

desvio padrão, valor mínimo e máximo e o 1° e 3° quartis. A Tabela 1 e a Figura 8 demonstram 

os cálculos e resultado gráfico do boxplot para os parâmetros Ra e Rz nas três categorias de 

corpos de prova. A linha que corta a coluna representa a mediana, os limites da coluna, os 

quartis, e as extremidades das linhas verticais o valor máximo e mínimo. Um marcador “x” 

representa a média. 

Tabela 1 - Medidas estatísticas para a produção de boxplot de Ra e Rz 

 

Fonte: Autor (2021). 

Figura 8 - Boxplots de Ra e Rz nas categorias 

 

Fonte: Autor (2021). 

Na categoria de referência CP, cada uma das 5 medidas estatísticas consideradas para a 

construção do boxplot está representada por uma das 5 observações existentes. Apesar da 

CP UV-LIPSS GR-LIPSS CP UV-LIPSS GR-LIPSS

N° Observações 5 45 45 5 45 45

Média 1,43 10,30 22,36 12,96 75,98 153,43

Desvio Padrão 0,40 4,69 7,37 3,93 29,57 53,34

Valor Mínimo 0,98 3,26 11,60 9,21 35,54 70,37

1° Quartil 1,01 6,56 16,85 9,49 46,36 110,02

Mediana 1,69 8,63 21,10 13,58 79,43 155,64

3° Quartil 1,69 13,25 26,21 13,66 106,10 195,07

Valor Máximo 1,77 20,37 34,61 18,86 128,31 262,01

Medida 

Estatística

Ra [nm] Rz [nm]
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evidente limitação de análise, é didático observar visualmente como se diferenciam os corpos 

de prova gerados por métodos de fabricação já consolidados e que possuem o objetivo de ser o 

menos rugosos possível frente às superfícies geradas por LIPSS. Outro ponto a se considerar é 

que agora há clareza através de comparação visual para comprovar que a categoria de referência 

cumpre seu propósito de buscar ser o menos rugosa possível. Já as outras categorias permitem 

uma análise mais completa acerca da distribuição de seus valores.  

Considerando Ra, na categoria UV-LIPPS o valor mínimo (3,26 nm) registrado é maior 

que o máximo registrado para CP. O valor do primeiro quartil (6,56 nm) indica que 25% das 

observações ficam abaixo desse valor, em contrapartida 25% das observações ficam acima de 

13,25 nm, como indicado pelo terceiro quartil, e o valor máximo é 20,37 nm. O valor da é 8,63 

nm. O valor médio calculado é 10,30 nm, maior que a mediana. Visualmente, a diferença de 

proporção em que a mediana corta a coluna indica assimetria na distribuição, resultando em 

uma curva de distribuição tendendo para a esquerda, como indicado também no histograma na 

Figura 6. 

Verifica-se que GR-LIPSS possui maior variação de dados, bem como valores maiores 

de mínimo e máximo. No entanto, a distribuição dos valores é mais simétrica que em UV-

LIPSS, observando o corte que a mediana faz no intervalo interquartil. 

Em Rz, é observado um comportamento muito semelhante ao analisado em Ra. A distribuição 

de CP demonstra a busca pela superfície menos rugosa possível. UV-LIPSS possui uma 

variação consideravelmente menor quando comparado a GR-LIPSS, além de uma distribuição 

em valores menores. 

Analisando lado a lado as distribuições de rugosidade média em área Sa e Sz, obtém-se 

o seguinte resultado, apresentado na Tabela 2 e Figura 9. 

Tabela 2 - Medidas estatísticas para a produção de boxplot de Sa e Sz 

 
Fonte: Autor (2021). 

CP UV-LIPSS GR-LIPSS CP UV-LIPSS GR-LIPSS

N° Observações 5 45 45 5 45 45

Média 24,21 71,34 97,82 148,49 486,14 754,98

Desvio Padrão 7,84 29,69 31,36 18,05 146,09 140,79

Valor Mínimo 14,40 25,29 54,71 119,88 224,30 491,20

1° Quartil 17,19 50,96 79,01 147,89 378,60 642,50

Mediana 27,80 66,18 92,55 149,70 465,30 745,80

3° Quartil 30,62 85,96 108,71 155,72 553,60 845,90

Valor Máximo 31,03 176,24 210,85 169,25 852,70 1081,20

Medida 

Estatística

Sz [nm]Sa [nm]
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Figura 9 - Boxplots de Sa e Sz nas categorias 

 
Fonte: Autor (2021). 

Mais uma vez, ocorre CP seguido de UV-LIPSS e depois GR-LIPSS. As distribuições 

apresentam simetria. Os pontos fora dos limites das “abas”, representados por pontos, são 

denominados outliers, e indicam valores que superam o valor de 1,5 vez o valor superior 

determinado pelo terceiro quartil ou 1,5 vez o valor inferior determinado pelo primeiro quartil. 

É importante a identificação desses valores para consideração de possíveis impactos no estudo 

a ser feito. São corpos de prova que tiveram valores que se destacam em relação à distribuição, 

e podem identificar algum erro de fabricação ou inconsistência. 

As visualizações de boxplot das medidas assimetria estatística (skewness – Ssk) e curtose 

(Sku) são apresentadas na Figura 10. 

Tabela 3 - Medidas estatísticas para a produção de boxplot de Ssk e Sku 

 

Fonte: Autor (2021). 
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Figura 10 - Boxplots de Ssk e Sku nas categorias 

 

Fonte: Autor (2021). 

 

Em relação à assimetria, os corpos de prova de CP apresentam maior consistência; UV-

LIPSS demonstra uma maior variância de assimetria em relação à GR-LIPSS e em cada uma 

das categorias há um outlier, em sentidos diferentes. Em curtose, todos os valores são menores 

que 3, classificando os perfis de distribuição de rugosidade como platicúrtica, que apresenta um 

perfil achatado. 

Os métodos de estatística descritiva permitem a definição em medidas estatísticas da 

distribuição dos corpos de prova. Os histogramas mostram as frequências de distribuição em 

intervalos e os boxplots uma comparação visual de 5 medidas estatísticas básicas, bem como a 

identificação de outliers nos parâmetros específicos. 

A seguir, são implementados algoritmos de aprendizado de máquina com o objetivo de 

clusterizar as observações não-rotuladas em grupos que consideram todos os parâmetros 

medidos e a descoberta de grupos com características semelhantes. Tal método não leva em 

consideração a categoria à qual cada corpo de provas pertence, mas apenas os valores dos 

parâmetros, que são previamente normalizados para correção das diferenças de grandeza. 

4.3 Análise dos Componentes Principais 

A proposta da clusterização é permitir o agrupamento dos corpos de provas levando-se 

em conta todas as medidas de todos os atributos de uma vez, consolidando o resultado em uma 

visualização simples que revela compreensões outrora não visíveis pela complexidade e 

tamanho dos dados. É uma das técnicas mais extensamente utilizada em Big Data. No contexto 
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de desenvolvimento de tecnologia há um número limitado de observações e parâmetros a se 

considerar, nesse caso, existe um total de 95 corpos de prova e 6 parâmetros de medida.  

Utilizando o sofware Jupyter Notebooks e linguagem Python, implementam-se os 

algoritmos necessários. Nos próximos parágrafos são descritos os passos para preparar os dados 

para a clusterização em si, destacando e discutindo os pontos relevantes para entendimento do 

resultado final. 

Após carregamento dos dados em Python a partir de uma planilha Excel, separam-se 

apenas as 6 colunas com os parâmetros a serem analisados, resultando em uma matriz de 

tamanho 95 x 6. O primeiro passo de tratamento dos dados é a normalização deles dentro de 

cada atributo, evitando-se, assim, que haja um enviesamento devido às diferentes grandezas dos 

atributos. No caso estudado, por exemplo, tem-se que Ra possui valor mínimo de 0,98 nm e 

máximo de 34,61 nm, enquanto para Rz o mínimo é 9,21 nm e o máximo 262,01 nm. Como o 

método de clusterização utiliza a distância euclidiana dos pontos para realizar o agrupamento, 

faz-se necessário a normalização para ajuste da comparação relativa dentro de cada atributo. A 

descrição da matriz resultante é apresentado na Tabela 4. 

Tabela 4 - Resultado da normalização dos valores dos parâmetros 

 

Fonte: Autor (2021). 

Uma vez normalizados os atributos, implementa-se a análise de componentes principais 

(do inglês, Principal Component Analysis - PCA). Essa técnica é uma aplicação prática dos 

conceitos de autovalores e autovetores estudados em álgebra linear. Basicamente, uma matriz 

com 6 atributos, possui 6 componentes principais. O primeiro componente principal (PC1) é 

um vetor que se estende na direção em que há a maior variância de dados; o segundo 

componente principal (PC2) é um vetor que se estende na direção em que há a segunda maior 

variância de dados, ortogonal (perpendicular, no caso bidimensional) ao PC1; o terceiro 

componente principal (PC3) segue a mesma lógica, mantendo a ortogonalidade dos vetores; e 

assim por diante até o sexto componente principal. Um dos resultados, apresentado na Figura 

11, é a ordenação descrescente do percentual da variância explicada dos dados que cada 

componente principal representa, uma vez projetados os pontos nas direções definidas. 
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Figura 11 - Percentual de variância explicada por componente principal 

 
Fonte: Autor (2021). 

O primeiro componente principal representa 49,5% da variância total da base de dados. 

O segundo representa 21,4%, o terceiro 15,5%, o quarto 10,8%, o quinto 2,0%, o sexto e último 

apenas 0,8%. Logo, os três primeiros componentes principais representam 86,4% da variância 

total dos dados, sendo que os últimos três componentes principais representam apenas 13,6%.  

O principal retorno da aplicação do algoritmo de análise de componentes principais é a 

projeção dos valores de atributos nos 6 componentes principais gerados, apresentado na Tabela 

5. 

Tabela 5 - Projeção dos valores normalizados nos componentes principais 

  

Fonte: Autor (2021). 

Os três primeiros componentes principais, por representarem 86,4% da variância dos 

dados, são escolhidos para serem eixos e projetam-se os valores normalizados das observações 

nesses eixos. O resultado é um gráfico de dispersão, apresentado na Figura 12. 
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Figura 12 - Gráficos de dispersão das projeções das observações nos 3 primeiros componentes principais 

 
Fonte: Autor (2021). 

Esse é um primeiro resultado muito consistente que o método PCA permite visualizar. 

A partir de 6 atributos foram separados 3 novos eixos que permitem a geração de visualizações 

em 2 e 3 dimensões e as descobertas de novos entendimentos.  

Outro retorno do algoritmo de PCA é a influência que cada atributo inicial teve na 

geração de cada componente principal. Na Tabela 6, pode-se observar o valor normalizado que 

apresenta as influências. Por exemplo, o PC1 possui nos parâmetros de rugosidade (Ra, Rz, Sa 

e Sz) as maiores influências em sua geração, em relação aos parâmetros de distribuição das 

rugosidades. Em contrapartida, o PC2 possui Ssk e Sku como os principais influenciadores. Já o 

PC3 possui em Ssk e Sa os atributos que mais influenciaram. Os valores em módulo são 

considerados, sendo que o sinal negativo indica apenas um dos sentidos das direções definidas, 

resquício dos métodos de álgebra linear aplicados. A Figura 13 traz visualmente a informação 

dessa influência. Com os componentes principais como eixos, são plotados vetores com os 

valores de cada atributo e tem-se uma representação visual que deixa claro o fator de influência 

de cada atributo na geração dos componentes principais. 
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Tabela 6 - Influência de cada atributo nos componentes principais 

 

Fonte: Autor (2021). 

Figura 13 - Influência de cada atributo nos componentes principais 

 
Fonte: Autor (2021). 

4.4 Clusterização Hierárquica 

Enquanto a análise dos componentes principais objetiva a redução de dimensionalidade 

para possibilitar a plotagem do gráfico de dispersão em 2 e 3 dimensões, a clusterização é o 

método que irá efetivamente agrupar as observações, baseado em medidas euclidianas de 

distância, considerando-se os valores normalizados resultantes do algoritmo de PCA.  

Uma forma bastante direta de visualizar como a agregação acontece é por meio do 

dendrograma. O dendrograma traz uma visualização de “árvore” em que cada nó representa um 

agrupamento. No limite inferior há todas as “folhas”, que são as observações em si, também 

chamadas de clusters unitários. A partir dos clusters unitários são calculados quais estão mais 

próximos e agrupam-se, definindo um novo cluster. Este processo é feito iterativamente. 

Componente Principal Ra Rz Sa Sz Ssk Sku

PC1 -0,52 -0,52 -0,42 -0,52 0,10 -0,02

PC2 0,15 0,16 -0,33 0,03 0,51 0,76

PC3 -0,25 -0,20 0,48 0,22 0,75 -0,22

PC4 0,35 0,39 -0,37 -0,34 0,39 -0,56

PC5 -0,03 0,28 0,58 -0,73 -0,02 0,24

PC6 -0,72 0,66 -0,13 0,17 -0,04 -0,03
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Figura 14 - Dendrograma do clustering hierárquico com corte em D = 9 

Fonte: Autor (2021). 

No limite das iterações forma-se apenas um grande cluster. Do dendrograma, pode-se 

definir uma linha de corte a partir de um valor de distância, representado na Figura 14 pela linha 

horizontal preta. O número de linhas verticais que são cortadas pela linha preta define quantos 

clusters são obtidos, no caso acima, definindo-se a Distância = 9, resulta 4 clusters, destacados 

à direita. Em parênteses, tem-se quantas observações fazem parte daquela linha e, no caso de 

apresentar apenas uma observação, leva o índice que a identifica. A Tabela 7 apresenta a 

distribuição da quantidade de observações nos clusters. 

 

Tabela 7 - Distribuição das observações nos clusters - 4 clusters 

 
Fonte: Autor (2021). 

Definidos a quais clusters as observações pertencem, pode-se plotá-los em 2 e 3 

dimensões no gráfico de dispersão obtido com a análise de componentes principais. 

Cluster CP GR-LIPSS UV-LIPSS

Magenta 0 2 10

Vermelho 0 20 2

Ciano 5 2 33

Verde 0 21 0
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Figura 15 - Clusterização hierárquica - 4 clusters 

 
Fonte: Autor (2021). 

Cada observação pertence a um dos 4 clusters e a partir das projeções dos valores nos 

componentes principais destaca-se visualmente a qual cluster cada observação pertence. No 

gráfico de dispersão em duas dimensões que considera o PC1 x PC2, pode-se observar que o 

primeiro componente principal separa 3 faixas de clusters: o verde, o vermelho, e o par 

ciano/magenta que apresentam valores de PC1 bastante similares. Estes dois últimos são 

separados pelo segundo componente principal. Sabendo-se que os parâmetros que mais 

influenciam na geração do PC1 são Ra, Rz, Sa, Sz, conclui-se que o cluster verde, o vermelho e 

o par ciano/magenta possuem distribuições que são claramente diferenciadas em uma 

combinação dos 4 parâmetros. Já em termos do segundo componente principal, cujos 

parâmetros Ssk e Sku possuem maior influência, o cluster magenta se destaca dos demais. Na 

Figura 16 é apresentado um boxplot dos clusters encontrados. Aqui pode-se verificar e validar 

as análises acima feitas. 
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Figura 16 - Boxplots dos 6 parâmetros nos clusters - 4 clusters 

 

Fonte: Autor (2021). 

Considerando a influência de cada atributo na geração dos componentes principais da 

Figura 13, verifica-se que os atributos que definem o cluster verde, o vermelho e o par 

ciano/magenta em termos PC1 são realmente as medidas de rugosidade Ra, Rz, Sa, Sz. Para Ra 

e Rz, a distribuição das medidas do cluster vermelho fica entre as distribuições do cluster verde 

e ciano, enquanto para esses atributos o ciano e o magenta apresentam elevada intersecção. Em 



53 

 

relação a intersecção das distribuições em Sa e Sz do cluster verde e do vermelho, pode-se 

interpretar que representam a parte desses clusters que se interseccionam. O que separa o cluster 

magenta dos outros é o PC2, cujas maiores influências são os atributos Ssk e Sku. No boxplot 

fica evidente que a distribuição dos valores das observações do cluster magenta se destaca para 

os atributos que definem o segundo componente principal. 

Para efeitos de estudo, apresenta-se a clusterização com 6 clusters, escolhendo-se um 

corte em D = 7,5 no dendrograma, como apresentado na Figura 17. 

Figura 17 - Dendrograma do clustering hierárquico com corte em D = 7,5 

Fonte: Autor (2021). 

Com o corte em D = 7,5 observa-se que não houve nenhuma alteração no cluster 

vermelho nem no verde. O cluster magenta e ciano na primeira clusterização foram divididos 

em 2 cada. A Tabela 8 apresenta a distribuição da quantidade de observações nos clusters e o 

resultado pode ser visto no gráfico de dispersão da Figura 18.  
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Tabela 8 - Distribuição das observações nos clusters - 6 clusters 

 
Fonte: Autor (2021). 

 

Figura 18 - Clusterização hierárquica - 6 clusters 

 

Fonte: Autor (2021). 

A clusterização com 6 clusters apresenta resultados interessantes. Primeiramente, 

percebe-se que há um cluster unitário, com uma única observação que não se agrupa com 

nenhuma outra nessa faixa de corte de distância. Esse é um exemplo de um outlier que a 

clusterização permitiu identificar. A partir dessa observação pode-se decidir excluir esse corpo 

de prova do estudo, dado que potencialmente possa enviesar os resultados da pesquisa. Também 

observa-se que cluster ciano na clusterização com 4 clusters se quebrou em dois, um ciano e 

Cluster CP GR-LIPSS UV-LIPSS

Vermelho 0 20 2

Verde 0 21 0

Amarelo 0 2 9

Magenta 0 2 23

Azul 0 0 1

Ciano 5 0 10



55 

 

um magenta, muito bem definidos, não apresentando nenhuma intersecção em termos de PC1. 

A Figura 19 apresenta os boxplots dos parâmetros para a clusterização com 6 clusters. 

 

Figura 19 - Boxplots dos 6 parâmetros nos clusters - 6 clusters 

 

Fonte: Autor (2021). 

Não houve nenhuma alteração no cluster verde nem no vermelho considerando a 

cluterização com 4 clusters, portanto a análise é a mesma da apresentada anteriormente. O 
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cluster ciano e o magenta se diferenciam em termos de PC1, podendo-se observar claramente 

a distinção nas medidas de rugosidade Ra, Rz, Sa, Sz. A única diferença do cluster amarelo na 

clusterização com 6 clusters para o magenta na clusterização de 4 clusters foi o destaque do 

outlier azul. Verifica-se que em ambas clusterizações no PC3 não houve diferenciações 

relevantes para a análise, concluindo-se que dois componentes principais seriam o bastante para 

a obtenção da compreensão. 
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5 CONCLUSÃO 

 

Com a realização deste trabalho foi possível apresentar um estudo de caso de aplicação 

de algoritmo de clusterização hierárquica em um contexto de desenvolvimento de superfícies 

nanotexturizadas por laser em implantes dentários, evidenciando uma nova perspectiva de 

análise quantitativa e qualitativa  de medidas de rugosidade, de forma complementar às análises 

estatísticas tradicionais. 

A nova perspectiva rompe com as limitações apresentadas pelos métodos de histograma 

e boxplot, não mais limitando a análise dentro de categorias, mas permitindo uma visão holística 

baseada puramente nos valores medidos e em suas características estatísticas inerentes. 

A análise de componentes principais, enquanto método de redução de dimensionalidade, 

permite uma análise visual de dados deixando claro as possíveis perdas de informação e 

influências que cada parâmetro considerado possui na geração de novos eixos. 

A clusterização hierárquica, enquanto método não-supervisionado de aprendizado de 

máquina, cujo objetivo não remete à busca de uma variável resposta, mas à descoberta de 

padrões de dados anteriormente não identificados e sua representação visual, possibilitando 

novos esclarecimentos, obtém sucesso e permite um aprofundamento das análises. 

Destaca-se a importância do aprendizado e uso das ferramentas de programação, 

poderosas aliadas do engenheiro contemporâneo, bem como da premissa do conhecimento 

técnico acerca dos objetos de estudo, nesse caso, medidas de rugosidade de superfície. 

Ressalta-se o dominante uso de técnicas de aprendizado de máquina em contextos de 

Big Data e do incipiente, mas promissor, uso dessas técnicas em contextos de desenvolvimento 

de tecnologia. Apesar da limitação de quantidade de dados a ser considerada, inerente a tal 

contexto, o estudo e entendimento da matemática por trás dos algoritmos de aprendizado de 

máquina aliado ao conhecimento técnico do objeto de estudo e ao uso de ferramentas de 

programação permitiu a execução e análise dos dados com êxito. Encontra-se e um terreno fértil 

de inúmeras possibilidades de uso nos mais diversos contextos. 

Em razão do exposto, pode-se afirmar que o objetivo principal deste trabalho foi 

alcançado, sendo concretizada a apresentação de aplicação de clusterização hierárquica em 

medidas de rugosidade de superfícies nanotexturizadas em implantes dentários. 

Como sugestão para futuro aprofundamento do trabalho recomenda-se a inclusão das 

medidas biológicas, resumidas em um componente principal, no lugar do terceiro componente 

principal. Assim, pode-se discriminar os clusters de acordo com o resultado biológico de suas 

observações.  
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# pip install adjustText 
# !pip install nbconvert 
# !pip install seaborn==0.11.0 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 
from adjustText import adjust_text 
from mpl_toolkits.mplot3d import axes3d 
from matplotlib.ticker import AutoMinorLocator 
# import matplotlib.colors as mcolors 
%matplotlib inline 

diretorio = "C:\\Diretório\\" 

 arquivo = "Excel.xlsx" 
df = pd.read_excel(diretorio + arquivo, header=0) 

round(df, ndigits=3).head() 
# atributos = df.columns[2:] 
# atributos 

df_CP = df[0:5] 
df_UV = df[5:50] 
df_GR = df[50:] 
df_ex = df_CP[0:3].append(df_UV[0:3]) 
df_ex = df_ex.append(df_GR[0:3]) 
round(df_ex, ndigits=2) 

 

 

Apêndice A – Código Python em Jupyter Notebook 

Importação de Bibliotecas 

In [ ]: 

 

Importação de Planilha Excel  

 
In [ ]: 

 
 

Validação 

 
In [ ]: 

 
 

Exemplo 

 
In [ ]: 
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# dataset 
# dataset.shape 
# dataset.head(5) 
# dataset.tail(5) 
# dataset[dataset['Categoria']=='UV-LIPSS'].describe() 
# df['Categoria'].groupby('Categoria').describe() 
 
# round(df[df['Categoria']=='UV-LIPSS'].describe(), ndigits = 3) 
df_descr = round(df.groupby('Categoria').describe(), ndigits = 3) 
# df_descr 
df_descr.T 
# df_descr 

# atributos = ['Ra', 'Rz', 'Sa', 'Sz', 'Ssk', 'Sku'] 
atributos = df.columns[2:] 
categorias = df['Categoria'].unique() 
 
# atributos 
# categorias 

Descrição do Dataset 

 
 

In [ ]: 

 
 

Declaração de variáveis 
 

atributos: parâmetros de mensuração 

categorias: categorias dos corpos de prova 
 
 

In [ ]: 

 

Histograma 

Ra nas 3 Categorias 
 

from matplotlib.ticker import AutoMinorLocator 
 
fig = plt.figure(figsize=(16,20), tight_layout=True) 

 
# fig.tight_layout(h_pad=10, w_pad=50) 
k=1 
colors = ['b', 'm', 'g'] 
caixas = [2,6,6] 
for j in range(0,1): 

 
for i in range(0,3): 

ax = fig.add_subplot(6,3,k) 
# fig, ax = plt.subplots(2,1,figsize=(12, 6), tight_layout = True) 
n, bins, patches = plt.hist(round(df[df['Categoria']==categorias[i]].loc[:,atri 

butos[j]], ndigits=2), color = colors[i], bins='rice'# , bins=caixas[i]) 
 

# define minor ticks and draw a grid with them 
minor_locator = AutoMinorLocator(2) 
plt.gca().xaxis.set_minor_locator(minor_locator) 
plt.grid(which='minor', color='white', lw = 0.5) 
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# x ticks 
xticks = [(bins[idx+1] + value)/2 for idx, value in enumerate(bins[:-1])] 
xticks_labels = [ "{:.2f}\na\n{:.2f}".format(value, bins[idx+1]) for idx, value 

in enumerate(bins[:-1])] 
plt.xticks(xticks, labels = xticks_labels) 
# remove major and minor ticks from the x axis, but keep the labels 
ax.tick_params(axis='x', which='both',length=0) 

 
# remove y ticks 
plt.yticks([]) 

 
# Hide the right and top spines 
ax.spines['bottom'].set_visible(False) 
ax.spines['left'].set_visible(False) 
ax.spines['right'].set_visible(False) 
ax.spines['top'].set_visible(False) 

 
for idx, value in enumerate(n): 

plt.text(xticks[idx], value+0.05, int(value), ha='center') 
 

plt.title('Categoria: {1} - Parâmetro: {0}'.format(atributos[j], categorias[i 
]), loc='center', fontsize=12) 

 

k=k+1 
k=k+1 

 

Boxplot 
 

 

 

Normalização 

 
Declaração de variável 

 

obs_index: index das observações 

x: valores dos parâmetros de mensuração 
 
 

my_pal = {"CP": "b", "UV-LIPSS": "m", "GR-LIPSS": "g"} 

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 6)) 

i=0 # Ra e Rz 
# i=2 # Sa e Sz 
# i=4 # Ssk e Sku 
 
sns.set_context("paper", font_scale=1.5, 
# rc={"font.size":9,"axes.titlesize":10,"axes.labelsize":5} 

) 
sns.boxplot(ax = axes[0], x=df["Categoria"], y=df[atributos[i]] 

, palette=my_pal, showmeans = True, meanprops={"marker":"x", "markeredgecol 
or":"black", "markersize":"10"}) 
 
sns.boxplot(ax = axes[1], x=df["Categoria"], y=df[atributos[i+1]] 

, palette=my_pal, showmeans = True, meanprops={"marker":"x", "markeredgecol 
or":"black", "markersize":"10"}) 
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obs_index_df = df.loc[:, ['ID']] 
# obs_index_df 
obs_index = pd.DataFrame.to_numpy(obs_index_df, dtype=str) 
# obs_index 
x = df.loc[:, atributos].values 

from sklearn.preprocessing import StandardScaler 

x_norm = StandardScaler().fit_transform(x) 

df_xnorm = pd.DataFrame(x_norm, columns = atributos, index = obs_index) 
 
round(df_xnorm, ndigits=3).head() 
# round(df_xnorm.describe(), ndigits=2) 

# n_components = 6 
pca_index = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6'] 
# pca_index[:n_components] 
pca_index 

In [ ]: 
 

 

Normalização 

 
In [ ]: 

 

Exemplo 
 

 

 

Análise de Componentes Principais (Principal Component Analysis) 

 
Declaração de Variáveis 

 

pca_index: Index dos Principal Components 
 
 

In [ ]: 

 
 

 
 
 
 
 
 
 
 
 
 

df_xnorm_CP = df_xnorm[0:5] 
df_xnorm_UV = df_xnorm[5:50] 
df_xnorm_GR = df_xnorm[50:] 
df_xnorm_ex = df_xnorm_CP[0:3].append(df_xnorm_UV[0:3]) 
df_xnorm_ex = df_xnorm_ex.append(df_xnorm_GR[0:3]) 
round(df_xnorm_ex, ndigits=2) 
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from sklearn.decomposition import PCA 
 
n_components = 6 
pca = PCA(n_components) 
 
comp_princ = pca.fit_transform(x_norm) 

df_pca = pd.DataFrame(data = comp_princ, columns = pca_index, index = obs_index) 

round(df_pca.head(), ndigits=3) 

df_pca_CP = df_pca[0:5] 
df_pca_UV = df_pca[5:50] 
df_pca_GR = df_pca[50:] 
df_pca_ex = df_pca_CP[0:3].append(df_pca_UV[0:3]) 
df_pca_ex = df_pca_ex.append(df_pca_GR[0:3]) 
round(df_pca_ex, ndigits=2) 

Aplicação código de Principal Component Analysis 

 
In [ ]: 

 
 

Exemplo da Projeção dos valores nos PC's 

 
In [ ]: 

 
 

Barplot Proporção de Variância Explicado 
 

 
 
 

 

explained_variance = pca.explained_variance_ratio_ 
cummulative_expl_var = 0 
#for i in range(len(explained_variance)): 
for i in range(n_components): 

e = explained_variance[i] 
cummulative_expl_var = cummulative_expl_var + e 

 
fig = plt.figure(figsize=(8,5)) 
ax = fig.add_axes([0,0,1,1]) 
# ax.plot(pca_index, np.cumsum(pca.explained_variance_ratio_), c = 'r') 
barplot = ax.bar(pca_index, pca.explained_variance_ratio_) 
 
# remove y ticks 
plt.yticks([]) 
 
# Hide the right and top spines 
ax.spines['bottom'].set_visible(False) 
ax.spines['left'].set_visible(False) 
ax.spines['right'].set_visible(False) 
ax.spines['top'].set_visible(False) 
 
for idx, rect in enumerate(barplot): 

height = rect.get_height() 
ax.text(rect.get_x() + rect.get_width()/2, 1.03*height 

, np.round(pca.explained_variance_ratio_*100,1)[idx], ha='center') 
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fig = plt.figure(figsize=(16,12)) 
ax = fig.add_subplot(111, projection = '3d') 
ax.scatter(comp_princ[:, 0], comp_princ[:, 1], comp_princ[:, 2], s=100) 
 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC2') 
ax.set_zlabel('PC3') 

influencias = pd.DataFrame(np.round(pca.components_.T,2) 
, columns = pca_index[:n_components] 
, index = atributos) 

influencias.T 

Scatter Plot 3D 

 
In [ ]: 

 
 

Scatter Plot 3D + 2D Plots 

 

 
 
 

Influência de cada atributo nos Componentes Principais 

 
In [ ]: 

fig = plt.figure(figsize=(15,12)) 
# fig.suptitle('Seu Título Aqui') 
 
ax = fig.add_subplot(221, projection = '3d') 
ax.scatter(comp_princ[:, 0], comp_princ[:, 1], comp_princ[:, 2], s=50) 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC2') 
ax.set_zlabel('PC3') 
 
ax = fig.add_subplot(222) 
ax.scatter(comp_princ[:, 0], comp_princ[:, 1], s=50) 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC2') 
 
ax = fig.add_subplot(223) 
ax.scatter(comp_princ[:, 0], comp_princ[:, 2], s=50) 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC3') 
 
ax = fig.add_subplot(224) 
ax.scatter(comp_princ[:, 1], comp_princ[:, 2], s=50) 
ax.set_xlabel('PC2') 
ax.set_ylabel('PC3') 
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Clusterização 

 
Dendrograma - 4 e 6 Clusters 

 

import scipy.cluster.hierarchy as sch 
 
cut_line = 9 # 4 clusters 
# cut_line = 7.5 # 6 clusters 

 
fig = plt.figure(figsize=(12,12)) 

 
# ax = fig.add_subplot(221) 
# dendogram = sch.dendrogram(sch.linkage(comp_princ[:,:3], method = 'ward'))#, labels = 
labels) 

 

 
ax = fig.add_subplot(221) 
sch.dendrogram(sch.linkage(comp_princ, method = 'ward') 
# , truncate_mode='lastp' 
# , p=20 
# , show_leaf_counts=False 
# , show_contracted=True 
# , leaf_rotation=90. 
# , leaf_font_size=12. 

, color_threshold=21 
, no_labels=True) 

plt.title('Clustering Hierárquico\nDendrograma Completo') 

fig, ax = plt.subplots(figsize=(6, 4)) 
 
# ax = plt.subplots(311) 
offset = 0.1 
limites = np.min(pca.components_.T[:,1])-offset, np.max(pca.components_.T[:,1])+offset, 
np.min(pca.components_.T[:,2])-offset, np.max(pca.components_.T[:,2]+offset) 
limites = np.round(limites, 3) 
 
ax.axis(limites) 
colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k'] 
 

 
for i in range (0, n_components): 

ax.annotate('' 
, xy=(pca.components_.T[[i],1],pca.components_.T[[i],2]) 
, xytext=(0,0) 
, arrowprops=dict(arrowstyle='->' 

, linewidth=0.7 
, color = colors[i] 
) 

) 
 
texts = [plt.text(pca.components_.T[[i],1]-0.03,pca.components_.T[[i],2], atributos[i], 
color=colors[i]) for i in range (0, n_components)] 
adjust_text(texts) 
 
ax.set_xlabel('PC2') # Add an x-label to the axes. 
ax.set_ylabel('PC3') # Add a y-label to the axes. 
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import scipy.cluster.hierarchy as sch 
from scipy.spatial.distance import pdist 
np.set_printoptions(precision=5, suppress=True) 
Z = sch.linkage(comp_princ, method='ward') 
n = 20 
# c = sch.cophenet(Z, pdist(comp_princ)) 
# c 
 
Z[-n:, 2] 

from sklearn.cluster import AgglomerativeClustering 
# n_clusters = 6 
 

hc_4 = AgglomerativeClustering(4, affinity = 'euclidean', linkage = 'ward') 
y_hc_4 = hc_4.fit_predict(comp_princ) 
y_hc_4 

# comp_princ 
# df 

# 
# 
# 

hc_6 = AgglomerativeClustering(6, affinity = 'euclidean', linkage = 'ward') 
y_hc_6 = hc_6.fit_predict(comp_princ) 
y_hc_6 

plt.xlabel('Observações') 
plt.ylabel('Distância (D)') 
plt.axhline(y=cut_line, color='k', linestyle='--') 

 
ax = fig.add_subplot(222) 
sch.dendrogram(sch.linkage(comp_princ, method = 'ward') 

, truncate_mode='lastp' 
, p=20 

# , show_leaf_counts=False 
# , show_contracted=True 

, leaf_rotation=90. 
, leaf_font_size=9 
, color_threshold=cut_line 
, labels = obs_index) 

plt.title('Clustering Hierárquico\nDendrograma Truncado em D = {0}'.format(cut_line)) 
plt.xlabel('Observações', fontsize = 10) 
plt.ylabel('Distância (D)') 

plt.show() 

 

Últimos n agrupamentos 

 
In [ ]: 

 

Aplicação de código de clusterização 

In [ ]: 
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Scatter Plot com Detalhes dos Clusters (4 Clusters) 
 

In [ ]: 
 

fig = plt.figure(figsize=(15,12)) 
fig.tight_layout(pad=5) 

 
# 4 Clusters 
n_clusters = 4 
y_hc = y_hc_4 
# dic_HC_4 = {0: "m", 1: "r", 2: "c", 3: "g",} 
colors_hc_4 = ['m', 'r', 'c', 'g'] 

 
# # # 6 Clusters 
# n_clusters = 6 
# y_hc = y_hc_6 
# colors = ['r', 'g', 'y', 'm', 'b', 'c'] 
# fig.suptitle('Clustering Hierárquico - ' + str(n_clusters) + ' Clusters') 

 

 
ax = fig.add_subplot(221, projection = '3d') 
for i in range(0, n_clusters): 

ax.scatter(comp_princ[y_hc == i, 0] 
, comp_princ[y_hc == i, 1] 
, comp_princ[y_hc == i, 2] 
, s = 50, c = colors_hc_4[i] 
, label = 'Cluster ' + str(i+1)) 

#ax.set_title('Tridimensional Plot PC1xPC2xPC3') 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC2') 
ax.set_zlabel('PC3') 
ax.legend(bbox_to_anchor=(2.25, 1), loc='upper left') 

 
#     for i in range(len(comp_princ)): 
# ax.text(comp_princ[i,0],comp_princ[i,1], comp_princ[i,2] 
#  , '%s' % (str(i+1)), size=10, color='k') 

 
ax = fig.add_subplot(222) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 0] 
, comp_princ[y_hc==i, 1] 
, s = 50 
, c = colors_hc_4[i]) 

ax.set_title('PC1xPC2 Plot') 
ax.set_xlabel('PC1') # Add an x-label to the axes. 
ax.set_ylabel('PC2') # Add a y-label to the axes. 

 
#     for i in range(len(comp_princ)): 
# ax.text(comp_princ[i,0],comp_princ[i,1], '%s' % (str(i+1)) 
#  , size=10, color='k', ha = 'center', va = 'center') 

 
ax = fig.add_subplot(223) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 0] 
, comp_princ[y_hc==i, 2] 
, s = 50 
, c = colors_hc_4[i]) 

ax.set_title('PC1xPC3 Plot') 
ax.set_xlabel('PC1') # Add an x-label to the axes. 
ax.set_ylabel('PC3') # Add a y-label to the axes. 
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#     for i in range(len(comp_princ)): 
#         ax.text(comp_princ[i,0],comp_princ[i,2], '%s' % (str(i+1)) 

 
 
 

Scatter Plot com Detalhes dos Clusters (6 Clusters) 

In [ ]: 
 

fig = plt.figure(figsize=(15,12)) 
fig.tight_layout(pad=5) 

 
# 4 Clusters 
n_clusters = 6 
y_hc = y_hc_6 
# dic_HC_4 = {0: "m", 1: "r", 2: "c", 3: "g",} 
colors_hc_6 = ['r', 'g', 'y', 'm', 'b', 'c'] 

 
# # # 6 Clusters 
# n_clusters = 6 
# y_hc = y_hc_6 
# colors = ['r', 'g', 'y', 'm', 'b', 'c'] 
# fig.suptitle('Clustering Hierárquico - ' + str(n_clusters) + ' Clusters') 

 

 
ax = fig.add_subplot(221, projection = '3d') 
for i in range(0, n_clusters): 

ax.scatter(comp_princ[y_hc == i, 0] 
, comp_princ[y_hc == i, 1] 
, comp_princ[y_hc == i, 2] 
, s = 50, c = colors_hc_6[i] 
, label = 'Cluster ' + str(i+1)) 

#ax.set_title('Tridimensional Plot PC1xPC2xPC3') 
ax.set_xlabel('PC1') 
ax.set_ylabel('PC2') 
ax.set_zlabel('PC3') 
ax.legend(bbox_to_anchor=(2.25, 1), loc='upper left') 

 
#     for i in range(len(comp_princ)): 
# ax.text(comp_princ[i,0],comp_princ[i,1], comp_princ[i,2] 
#  , '%s' % (str(i+1)), size=10, color='k') 

 

# , size=10, color='k', ha = 'center', va = 'center') 

ax = fig.add_subplot(224) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 1] 
, comp_princ[y_hc==i, 2] 
, s = 50 
, c = colors_hc_4[i]) 

ax.set_title('PC2xPC3 Plot') 
ax.set_xlabel('PC2') # Add an x-label to the axes. 
ax.set_ylabel('PC3') # Add a y-label to the axes. 

# 
# 
# 

for i in range(len(comp_princ)): 
ax.text(comp_princ[i,1],comp_princ[i,2], '%s' % (str(i+1)) 

, size=8, color='k', ha = 'left', va = 'center') 
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# df_clusters = np.c_[df,y_hc] 
# pd.DataFrame(df_clusters) 
 
# df_clusters = pd.concat([df, pd.DataFrame(y_hc)], axis=1) 
# df_clusters 
 
df_hc_4 = pd.DataFrame(y_hc_4, columns=["HC_4"]) 
df_hc_6 = pd.DataFrame(y_hc_6, columns=["HC_6"]) 
df_clusters = pd.concat([df, df_hc_4, df_hc_6], axis=1) 
 
df_clusters.head() 

ax = fig.add_subplot(222) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 0] 
, comp_princ[y_hc==i, 1] 
, s = 50 
, c = colors_hc_6[i]) 

ax.set_title('PC1xPC2 Plot') 
ax.set_xlabel('PC1') # Add an x-label to the axes. 
ax.set_ylabel('PC2') # Add a y-label to the axes. 

 
#     for i in range(len(comp_princ)): 
# ax.text(comp_princ[i,0],comp_princ[i,1], '%s' % (str(i+1)) 
#  , size=10, color='k', ha = 'center', va = 'center') 

 
ax = fig.add_subplot(223) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 0] 
, comp_princ[y_hc==i, 2] 
, s = 50 
, c = colors_hc_6[i]) 

ax.set_title('PC1xPC3 Plot') 
ax.set_xlabel('PC1') # Add an x-label to the axes. 
ax.set_ylabel('PC3') # Add a y-label to the axes. 

 
#     for i in range(len(comp_princ)): 
#         ax.text(comp_princ[i,0],comp_princ[i,2], '%s' % (str(i+1)) 

 
 

In [ ]: 

 
 
 
 

# , size=10, color='k', ha = 'center', va = 'center') 
#### Scatter Plot com Detalhes dos Clusters (4 e 6 Clusters) 

ax = fig.add_subplot(224) 
for i in range (0, n_clusters): 

ax.scatter(comp_princ[y_hc==i, 1] 
, comp_princ[y_hc==i, 2] 
, s = 50 
, c = colors_hc_6[i]) 

ax.set_title('PC2xPC3 Plot') 
ax.set_xlabel('PC2') # Add an x-label to the axes. 
ax.set_ylabel('PC3') # Add a y-label to the axes. 

# 
# 
# 

for i in range(len(comp_princ)): 
ax.text(comp_princ[i,1],comp_princ[i,2], '%s' % (str(i+1)) 

, size=8, color='k', ha = 'left', va = 'center') 
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BoxPlot com Detalhes dos Clusters (4 Clusters) 
 

dic_HC_4 = {0: "m", 1: "r", 2: "c", 3: "g",} 
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(16, 20)) 

 
i=0 # Ra e Rz 
# i=2 # Sa e Sz 
# i=4 # Ssk e Sku 

 
sns.set_context("paper", font_scale=1.5, 
# rc={"font.size":9,"axes.titlesize":10,"axes.labelsize":5} 

) 
sns.boxplot(ax = axes[0,0], x=df_clusters["HC_4"], y=df_clusters[atributos[i]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[0,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+1]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[1,0], x=df_clusters["HC_4"], y=df_clusters[atributos[i+2]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[1,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+3]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[2,0], x=df_clusters["HC_4"], y=df_clusters[atributos[i+4]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[2,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+5]] 

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

dic_HC_6 = {0: "r", 1: "g", 2: "y", 3: "m", 4: "b", 5: "c"} 
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(16, 20)) 

 

 
i=0 # Ra e Rz 
# i=2 # Sa e Sz 
# i=4 # Ssk e Sku 

 
sns.set_context("paper", font_scale=1.5, 
# rc={"font.size":9,"axes.titlesize":10,"axes.labelsize":5} 

) 
sns.boxplot(ax = axes[0,0], x=df_clusters["HC_6"], y=df_clusters[atributos[i]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[0,1], x=df_clusters["HC_6"], y=df_clusters[atributos[i+1]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[1,0], x=df_clusters["HC_6"], y=df_clusters[atributos[i+2]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[1,1], x=df_clusters["HC_6"], y=df_clusters[atributos[i+3]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
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pd.crosstab(df_clusters["HC_4"], df_clusters["Categoria"]) 

pd.crosstab(df_clusters["HC_6"], df_clusters["Categoria"]) 

def coding(col, codeDict): 
colCoded = pd.Series(col, copy=True) 
for key, value in codeDict.items(): 
colCoded.replace(key, value, inplace=True) 

return colCoded 
 
depara_y_hc_4 = coding(y_hc_4, {0:"Cluster 1", 1:"Cluster 2", 2:"Cluster 3", 3:"Cluster 
4"}) 
 
pd.concat([pd.Series(y_hc_4),depara_y_hc_4], axis=1) 

olor":"black", "markersize":"10"}) 
 
sns.boxplot(ax = axes[2,0], x=df_clusters["HC_6"], y=df_clusters[atributos[i+4]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 
sns.boxplot(ax = axes[2,1], x=df_clusters["HC_6"], y=df_clusters[atributos[i+5]] 

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec 
olor":"black", "markersize":"10"}) 

 

 
In [ ]: 

 

In [ ]: 

 

In [ ]: 

 

 
pd.value_counts(y_hc_4) 


