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RESUMO

NASCIMENTO, A. R. Estudo de caso: clusterizacdo hierarquica de rugosidade em superficies
nanotexturizadas em implantes dentarios. 2021. 73 f. Monografia (Trabalho de Conclusdo de

Curso) — Escola de Engenharia de Sao Carlos, Universidade de Sdo Paulo, S&o Carlos, 2021.

A proposta do trabalho é a aplicacdo de um algoritmo de aprendizado de maquina nao-
supervisionado, mais especificamente a clusterizacdo hierarquica (também conhecido como
agrupamento hierarquico), em medidas de rugosidade de corpos de prova nanotexturizados
através da tecnologia LIPSS (estruturas periodicas induzidas por laser; no inglés, Laser Induced
Periodic Surface Structures), usados no estudo de impacto na aderéncia bacteriana e criacao de
biofilme de implantes dentarios. Tais processos bioldgicos ddo inicio a colonizagao de bactérias
e sdo a principal fonte de inflamacGes e infeccdes que podem levar a faléncia do implante. A
estatistica tradicional é o principal metodo utilizado para embasar as analises quantitativas e
qualitativas da metodologia cientifica. Os algoritmos de aprendizado de maquina oferecem uma
nova perspectiva de analise de dados. Enquanto métodos supervisionados buscam uma variavel
resposta, 0s ndo-supervisionados possuem o objetivo de identificar padrdes nos dados de forma
holistica. A analise de componentes principais, um método de reducdo de dimensionalidade,
torna possivel a geracdo de graficos de dispersdo em duas e trés dimensdes que auxiliam a
visualizacdo e analise qualitativa dos dados. Os algortimos foram implementados em linguagem
Python. Conclui-se evidenciando a nova perspectiva que os métodos de aprendizado de
méaquina trazem ao problema exposto em comparagdo aos métodos estatisticos tradicionais e,
de maneira geral, ressalta-se a importancia do desenvolvimento e uso de ferramentas de

programacéo para o engenheiro contemporaneo.

Palavras-chave: Aprendizado de Maquina, Agrupamento Hierarquico, Analise de Componentes

Principais, Estruturas Periodicas Induzidas por Laser.






ABSTRACT

NASCIMENTO, A. R. Study case: hierarchical clustering of roughness in nanotextured
surfaces in dental implants. 2021. 73 f. Monografia (Trabalho de Conclusdo de Curso) —
Escola de Engenharia de So Carlos, Universidade de Sao Paulo, S&o Carlos, 2021.

The projects' purpose is to implement a non-supervised machine learning algorithm, more
specifically hierarchical clustering, on the roughness measures of test specimens nanotextured
through laser induced periodic surface structures (LIPSS) technology, used to study the impact
on bacterial adherence and biofilm formation on the abutment surface of dental implants. These
biological processes trigger bacterial colonization and are the main source of inflammation and
infection that can lead to the dental implant failure. Traditional statistics’ quantitative and
qualitative analysis are commonly used to support the scientific method. Machine Learning
algorithms offer a new perspective in data analysis. Whereas supervised learning algorithms
focus on a finding a response variable, the non-supervised techniques aim at holistically
identifying patterns in the data. The principal component analysis, a dimensionality reduction
method, enable the generation of scatterplots in two and three dimensions, which assists the
visualization and qualitative assessment of data. The algorithms were implemented in Python
programming language. This study emphasizes the importance of programming skills
development for the modern engineer as an enabler of new perspectives in data analysis with

machine learning algorithms and traditional statistics.

Keywords: Machine Learning, Hierarchical Clustering, Principal Component Analysis, Laser

Induced Periodic Surface Structures.
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1 INTRODUCAO

O presente trabalho € um estudo de caso com o intuito de explorar as aplicacdes de
métodos de aprendizado de maquinas em estruturas periodicas induzidas por laser para geracao
de nanoestruturas na superficie do pilar do dente de implantes dentarios.

Historicamente os esforcos tecnoldgicos focaram em fazer tal superficie 0 menos rugosa
possivel, com o objetivo de minimizar a aderéncia bacteriana. A nova tecnologia de laser
permite explorar a topografia da superficie em uma escala nanométrica, criando-se estruturas
organizadas.

Analises de rugosidade de superficies que utilizam a estatistica tradicional dao
embasamento ao método cientifico. A proposta do trabalho é explorar uma nova perspectiva de
analise de dados, comparando-se 0s métodos tradicionais frente a algoritmos de aprendizado de

maéaquina, mais especificamente, clusterizacdo hierarquica e analise de componentes principais.

1.1 Objetivos

Tradicionalmente sdo feitas analises estatisticas focadas em caracterizar a rugosidade de
superficies, correlaciona-las com os resultados bioldgicos e tirar conclusdes robustamente
embasadas, garantindo-se a replicabilidade de resultados. O desafio proposto é o estudo e
aplicacdo de algoritmos de aprendizado de méquina, mais especificamente técnicas de
clustering, com o objetivo de evidenciar as novas perspectivas de analise de dados
possibilitadas pela reducdo de dimensionalidade dos atributos, que permite geracdo de
visualizacdes em duas e trés dimensoes, e pela clusterizacdo hierarquica, que agrupa 0s corpos
de prova levando-se em consideracdo uma visao holistica de seus valores mensurados.

Vale ressaltar que as técnicas de aprendizado de méquina sao realizadas paralelamente
as analises estatisticas tradicionais e apresentam-se como aliadas, e ndo substitutas, dos métodos
ja consolidados.

Conclui-se, evidenciando a versatilidade e abrangéncia dos modelos de aprendizado de
maquina, a importancia cada vez maior do desenvolvimento de habilidades de programacéo
para o0 engenheiro contemporaneo e a importancia do conhecimento técnico que torna possivel
0 estudo enquanto método cientifico, garantindo a confiabilidade de resultados.

Assim, este trabalho tem por objetivo geral apresentar uma aplicacéo de clusterizacao
hierarquica de rugosidade em superficies nanotexturizadas em implantes dentarios atualmente

disponiveis no mercado odontolégico.
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2 REVISAO BIBLIOGRAFICA
2.1 Implantes Dentérios no Contexto Bioldgico

2.1.1 Implantes Dentérios

A perda de elementos dentais constitui um fator de grande impacto na vida de uma
pessoa, tanto do ponto de vista estético, quanto em relacdo as consequéncias decorrentes da
falta de dentes, como problemas na mastigagéo, aceitacdo social, autoestima, dentre outros. A
utilizacdo de implantes dentais com integracdo Ossea tornou-se um método confiavel e
previsivel de substituir dentes perdidos a fim de melhorar a qualidade de vida dos pacientes.
Cada vez mais tem ocorrido concentracdo de esforgos para melhorar ainda mais o conforto do
tratamento de implantes do paciente, minimizando o desconforto pré e poés-cirurgico,
maximizando a estética e melhorando o sucesso a longo prazo dos implantes (MENASSA et
al., 2014).

Sdo chamados de implantes dentarios os elementos aloplasticos (substancias inertes,
estranhas ao organismo humano) alojadas no tecido 6sseo completo ou abaixo do periosteo,
para preservar dentes naturais ou substituir dentes faltantes. A técnica cirdrgica para a
realizacdo dos implantes sofreu importantes alteragfes ao longo dos anos, principalmente com
0 desenvolvimento de tecnologias que permitem a modelagem em 3 dimensdes da estrutura
Ossea, permitindo assim uma menor morbidade e melhor recuperacdo do paciente, além de
aumentar a possibilidade de sucesso do implante (XUEREB et al., 2015). A Figura 1 mostra a

estrutura de um implante.

Figura 1 - Partes de um implante dental.

COROA
PROTETICA

PILAR DE
PROTESE

Fonte: RC Odontologia (s/d).
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Os implantes dentarios produziram resultados satisfatérios em casos nos quais o
tratamento por meio da reconstrucdo completa da boca foi anteriormente dificil. Uma protese
bem elaborada de implantes dentarios restaura a funcdo de mastigacédo, possui biomecanica e
estética superiores e facilita cuidados de longa duracéo eficientes. A boa elaboracdo de uma
prétese de implante dentério baseia-se na colocacdo apropriada do implante, levando-se em
consideracao a importancia na colocacgéo, angulo e direcdo do implante (SIMONIS et al., 2010).
Para que estes objetivos sejam alcangados, é preciso que a colocacdo do implante seja planejada
de forma multidisciplinar, de modo que o resultado final seja vislumbrado (BERNARDES et
al., 2006).

A descoberta da capacidade de um 0sso integrar estruturas exodgenas, chamada de
osseointegracéo, foi descrita primeiramente pelo professor suico Per-Ingvar Branemark e sua
equipe, em 1965 (MARTINS, 2011), ao observarem em seus experimentos que o titanio se
integrava perfeitamente ao 0sso de coelhos, sem haver rejeicdo, e serviu como base para o
desenvolvimento dos implantes dentarios modernos. A evolucgdo da implantologia oral por meio
da pesquisa experimental e clinica possibilitou o desenvolvimento de técnicas cirdrgicas e
proteses que melhoraram as expectativas de sucesso entre os pacientes (DOMINGUEZ et al.,
2013).

A colocagdo dos implantes simplifica a reabilitagdo, especialmente nos casos de
reabsorcdo mandibular completa desdentada, tdo dificil de resolver por técnicas convencionais.
E é gracas a osseointegracdo que os problemas de estética, retencao, suporte e estabilidade da
prétese sdo resolvidos. Esta terceira denticdo, como alguns autores denominam, resulta da
integracdo Ossea dos implantes e do bom manejo dos tecidos moles (TEIXEIRA, 2010).

Ao longo dos anos os implantes dentarios evoluiram, propiciando assim o
desenvolvimento de técnicas cirurgicas avancadas, que possibilitam uma rapida recuperacao do
paciente. Apesar da biocompatibilidade do titdnio, uma modulacdo positiva dos processos
bioldgicos é de alguma forma limitada porque o titanio por si s € incapaz de induzir a aposi¢do
Ossea (osteoindugdo). Portanto, pesquisas recentes tém se concentrado em melhorar 0s
tratamentos de superficie para promover a integragdo precoce, reduzindo assim o tempo total
de tratamento necessario (TEIXEIRA, 2010).

2.1.2 Peri-implantite

Os tecidos peri-implantares saudaveis desempenham um papel importante como

barreira bioldgica para alguns dos possiveis agentes causadores da doenca peri-implantar. Se
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realizar uma comparacgéo entre o dente e o implante, fica claro o entendimento que existem
mecanismos de protecao especificos no dente, como o epitélio juncional, o tecido conjuntivo e
os elementos celulares do sistema imunoldgico. O epitelio e a interface entre o tecido conjuntivo
supralveolar e a superficie de titdnio de um implante sdo diferentes da interface homologa do
complexo gengivo-dentario. A unido do epitélio com a superficie do implante é do tipo
hemidesmossomal, como a do tecido conjuntivo, mas o arranjo de suas fibras ¢é
predominantemente longitudinal em relacao a superficie do implante e ndo perpendicular como
ocorre no dente natural (SCHWARZ et al., 2018).

A mucosite peri-implantar corresponde em termos basicos a gengivite. Foi definida
como uma reacdo inflamatdria reversivel na mucosa peri-implantar em torno de um implante
dentario osseointegrado. A mucosa peri-implantar € uma barreira biolégica de 3 a 4 mm que
protege a zona de osseointegracdo de fatores liberados da placa e da cavidade oral. Sua
superficie externa é revestida por epitélio oral estratificado queratinizado continuo com um
epitélio juncional que esta preso a superficie do implante por uma lamina basal e por
hemidesmossomos. O epitélio juncional tem 2 mm de comprimento e é separado do 0sso
alveolar por apenas 1 a 2 mm de tecido conjuntivo rico em colageno semelhante a uma cicatriz,
com menos vasos sanguineos e fibroblastos do que a gengiva ao redor dos dentes. O tecido
conjuntivo proximo a superficie do implante constroi a vedacdo mucosa, onde se forma a
resposta inflamatoria a colonizacdo microbioldgica da superficie do implante (OLIVEIRA et
al., 2015).

A peri-implantite corresponde, basicamente, & periodontite do adulto. Foi definida como
uma reacdo inflamatdria associada a perda do osso de suporte ao redor do implante dentério.
Existem poucos relatos sobre os tecidos peri-implantar de implantes malsucedido em humanos.
Em comparacdo com os tecidos periodontais, 0 tecido peri-implantar tem uma capacidade
limitada para resolver lesGes progressivas associadas as plaquetas em modelos animais
experimentais. Grandes lesdes inflamatorias foram encontradas na mucosa peri-implantar e se
estendem para o 0sso alveolar provocando destruicdo dssea avancada mediada (NOGUEIRA-
FILHO et al., 2011).

As lesdes de peri-implantite séo frequentemente assintomaticas e geralmente detectadas
em consultas de rotina por sangramento a sondagem, que esta sempre presente na doenca peri-
implantar (exceto em alguns fumantes). Outros sinais clinicos da doenga incluem supuracéo,
aumento da profundidade de sondagem em relacdo a linha de base, recessdo da mucosa,

drenagem dos seios da face e edema da mucosa peri-implantar. Se nao for diagnosticado e
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administrado de forma eficaz, a doenga peri-implantar pode resultar na perda completa da
integracao e perda do implante (OLIVEIRA et al., 2015).

Figura 2 - LesBes peri-implantares.

Fonte: Cordeiro (2009).

O desenho do implante é um fator importante no inicio e no desenvolvimento da peri-
implantite. Um sistema de implante especifico é descrito de acordo com sua morfologia
macroscopica, sua microssuperficie e a qualidade do ajuste de seus componentes. A rugosidade
da superficie de um implante facilita a aderéncia da placa bacteriana quando esta € exposta ao
meio bucal, embora ndo haja diferengas quanto ao tipo de superficie e a selecdo de espécies
bacterianas agressivas colonizadoras (MOMBELLLI et al., 2012).

O desencontro entre 0s componentes que compdem um sistema implante-protese pode
favorecer a retencdo da placa bacteriana, além de permitir a passagem de microrganismos para
o pilar transepitelial. Isso é possivel porque, conforme descrito no estudo de Binon et al. (1992)
0 erro médio de ajuste entre o abutment (também conhecido como pilar do implante, da prétese
ou do dente) e o implante mostra discrepancias entre 20 e 49 micrébmetros entre 0s componentes
dos diferentes tipos de implantes comercializados atualmente. Este espaco fornece uma porta
de entrada para microrganismos na cavidade oral que tém menos de 10 micrometros de
tamanho.

A morfologia externa do implante de titanio parece ser de menor importancia, desde que
tenha sido instalado corretamente. Deve-se levar em consideracdo a influéncia do desenho
macroscopico, no que diz respeito ao padrdo de transmissdo das forgas para o 0sso, que pode
favorecer a sobrecarga mecanica em algum ponto, principalmente na area de unido entre 0 0SS0

e o colar cervical implantar. A perda dssea neste ponto biomecanicamente fraco facilita a
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formacdo de um defeito 0sseo neste nivel e sua subsequente contaminacdo (ALGRAFEE et al.,
2012).

Os fendmenos de corrosao que podem ocorrer quando uma estrutura de metal ndo nobre
é fixada a um implante de titanio também s&o apontados como causa de peri-implantite. Nestes
casos, verificou-se um aumento do nimero de macréfagos nos tecidos peri-implantares, o que

favoreceria a reabsorcdo dssea inicial por causas nao infecciosas (OLIVEIRA et al., 2015).
2.1.3 Aderéncia Bacteriana

O biofilme é descrito como uma comunidade microbiana relativamente indefinivel,
associada a superficie do dente ou a qualquer material rigido que ndo se solta. Biofilmes sdo
onipresentes e se formam em praticamente todas as superficies imersas em ambiente aquoso
natural, por exemplo, canos de agua, tecido vivo, superficie de dente, dispositivos médicos
implantados, implantes dentarios, etc. Infecces mediadas por adesdo de biofilme mais
comumente vistas sdo no coragdo implantado, valvulas, cateteres venosos, proteses vasculares,
dispositivos de fixacdo de fraturas, implantes mamarios, lentes intraoculares e implantes
dentérios.

Biofilmes consistem em uma ou mais comunidades de microrganismos distribuidos ndo
aleatoriamente em um glicocalice. Esses biofilmes permitem que os microrganismos se colem
e se multipliquem nas superficies. As interacGes entre as varias espécies bacterianas que
residem e crescem no biofilme ocorrem por troca metabdlica, contato fisico, troca de
informacdes genéticas, sinalizacdo de informacgdes mediadas por moléculas (BUSSHER et al.,
2010).

O biofilme formado na superficie do dente é denominado placa dentéria. As bactérias
que proliferam na placa dentaria formam os principais fatores etioldgicos para a maioria das
doencas dentérias, por exemplo, cérie, gengivite, periodontite e peri-implantite. O ataque
microbiano foi citado como a principal causa da falha do implante dentario. Os biofilmes sdo
responsaveis pela associacdo de cerca de 65% das doencas, incluindo peri-implantite e
periodontite (SAKKA et al., 2012).

A evidéncia microbioldgica da primeira infeccéo peri-implantar relacionada ao biofilme
humano vem do estudo em amostras de placa coletadas da maior parte apical de 17 implantes
doentes. Implantes com bolsas de sondagem mais profundas mostraram uma presenca de menor

numero de cocoides e mais niveis de espiroquetas (RAMS, 1983).
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A formacdo de biofilme em implantes dentarios e nos dentes segue um padréo
semelhante de colonizacdo microbiana. A formacéo de biofilme ao redor dos dentes naturais
ocorre em minutos e as especies especificas comecam a colonizar em 2 a 6 horas. A razéo
atribuida possivelmente reside no fato de que as superficies dentais limpas provavelmente tém
restos de microbiota ndo aderida que podem se multiplicar imediatamente e fornecer uma
superficie favoravel para a fixacdo dos colonizadores tardios (LEE; WANG, 2010).

As superficies imaculadas dos implantes ndo possuem a microbiota desejada e exigem
que os primeiros colonizadores preparem o terreno para o desenvolvimento das comunidades
complexas (LI etal., 2004). A pelicula comeca a se formar na superficie do implante 30 minutos
apos a exposicao do implante na cavidade oral. A pelicula adquirida nos implantes dentarios,
devido a sua menor capacidade de absorcdo de albumina, causa uma baixa formacéo de placa
ao redor dos implantes.

Os primeiros colonizadores sdo predominantemente cocos Gram-positivos, bastonetes
e espécies de actinomices. Os patdgenos periodontais que colonizam os estreptococos (P.
gingivalis, P. intermedia, etc) sdo os microrganismos causadores responsaveis pela peri-
implantite e periodontite (FURST et al., 2007).

2.2 Processos de Tratamento de Superficies para Implantes

Um parametro importante para o sucesso clinico dos implantes dentarios é a formagéo
do contato direto entre o implante e 0 0sso circundante. A qualidade da interface osso-implante
é diretamente influenciada pela rugosidade da superficie do implante que, desde o inicio da
década de 1980, tem sido identificada como um dos seis fatores que sdo particularmente
importantes para a incorporacéo do implante no osso (NOVAES JR et al., 2010).

Tanto a morfologia quanto a rugosidade da superficie influenciam a proliferacéo e
diferenciacdo celular, a sintese da matriz extracelular, os fatores de produgdo locais e até mesmo
a forma celular. Além disso, a forma da célula regula seu crescimento, expressao génica,
secrecdo de proteinas, diferenciacdo e apoptose. Portanto, a aderéncia dos osteoblastos nas
superficies dos implantes ndo € suficiente para a realizacdo da osseointegracdo, muito menos
para melhora-la, mas é necessaria, principalmente, para permitir que a célula receba os sinais
para induzir a sua proliferacdo. Além disso, a rugosidade ndo so facilita a retencdo das células
osteogénicas, mas também permite que elas migrem para a superficie do implante por dsseo-

condutividade.
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A formacdo 6ssea mais rapida e forte proporciona maior estabilidade durante o processo
de reparo, permitindo carregamento do implante ainda mais rapido. As superficies dos
implantes orais apresentam estruturas mensuraveis em escala milimétrica, micrométrica e
nanométrica. A forma como essas estruturas influenciam o reparo tem sido tema de vérias
publicagdes e estudos nos ultimos anos (ALLA et al., 2011).

Até agora, as certezas tém se limitado a influéncia do desenho do implante e da
rugosidade da superficie na escala micrométrica. Um desenho em forma de parafuso e uma
superficie com rugosidade média (Sa) de 1 a 2 um apresentaram melhores resultados. Estudos
tém demonstrado que implantes de titdnio com rugosidade adequada podem melhorar o contato
osso-implante, além de aumentar os valores de torque de remocdo. Por outro lado, 0 aumento
da rugosidade superficial ao nivel de superficies tratadas com titdnio na forma de plasma com
Sa acima de 2 um, provoca uma resposta 6ssea prejudicada e ndo reforcada (JEMAT et al.,
2015).

Como resultado, nos ultimos 20 anos, muitos sistemas de implantes com diferentes
topografias de superficie foram introduzidos. Os implantes orais sdo um exemplo da estreita
ligacédo entre a pesquisa e a industria, uma vez que as descobertas laboratoriais frequentemente
se tornam aplicagdes clinicas. No entanto, qualquer alteracdo na morfologia do implante, ou
seja, no seu desenho, provoca alteracdes na topografia ao nivel micrométrico e vice-versa. Da
mesma forma, mudancas quimicas causam mudangas fisicas e vice-versa.

Existem muitos tipos de tratamentos de superficie no mercado. Em geral, todos buscam
alterar a rugosidade da superficie previamente usinada, elevando-a a niveis considerados
6timos. Uma combinacdo de jateamento, seguida de condicionamento acido, tem sido uma
técnica comumente usada para tratamento de superficie nos ultimos anos.

O principal motivo da combinacdo de metodos é que, hipoteticamente, 0 jateamento
atinge uma rugosidade e fixagdo mecanica ideais, enquanto o condicionamento acido suaviza
0s picos e pode adicionar um componente de alta frequéncia a superficie do implante, com
potencial importancia para a aderéncia de proteinas, que é considerada importante durante o
processo inicial de consolidacdo 6ssea (NOVAES JR et al., 2010).

As caracteristicas superficiais obtidas com a deformacéo por jateamento dependem do
tipo de particula utilizada, sua dureza, tamanho e velocidade de impacto. O processo geralmente
realizado com particulas de oxido de titanio (TiO2) ou alumina (Al203) permite um bom
controle do tamanho das microcavidades resultantes.

Algumas particulas restantes podem, no entanto, ficar embutidas e contaminar a

superficie do implante. O ataque &cido remove algumas camadas atdbmicas da superficie
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deformada, parte da tensdo superficial residual, e reduz a possibilidade de contaminacdo da
superficie por particulas que sobraram do processo de jateamento, pois também atua na limpeza
da superficie. Esses processos criam microcavidades que se sobrepdem a superficie rugosa pré-
jateada.

Cada fabricante tem seu proprio método de condicionamento &cido com relagdo a
temperatura, concentracdo de acidos e tempo de exposicdo. Em geral, ocorre o ataque acido
duplo, que é realizado mergulhando primeiro os implantes em solugdes de HCI + H,SO4, HNO3
+ HF ou HNO3. Em seguida, o implante é novamente imerso em solucdo aquosa de HNO3 para
estabilizar a camada de 6xido de titanio (BAUER et al., 2013).

A versatilidade desse tipo de tratamento permite uma ampla variacdo nos procedimentos
para se obter a rugosidade desejada. Por outro lado, esta caracteristica pode produzir superficies
significativamente diferentes. Consequentemente, € muito importante caracterizar as
superficies para obter os valores previstos pelos tratamentos propostos. Segundo Wennerberg
e Albrektsson (2000), um perfildmetro interferométrico é uma forma segura e eficaz de medir

a rugosidade de implantes em formato de parafuso.

2.2.1 Procedimento atual

Diferentes metodologias tém sido aplicadas para o tratamento da superficie de
implantes. Difuséo plasma de hidroxiapatita e titanio formam uma camada sobre o implante,
cuja rugosidade depende do tamanho das particulas. Entretanto proporciona superficies com
rugosidade grande, o que aumenta a possibilidade de contaminacdo bacteriana (GALLI et al.,
2013).

O jateamento por particulas de 6xido de aluminio ou titanio resultam impressdes
irregulares. As particulas ndo devem aderir ao implante, apenas criar as rugosidades, que
dependem do tamanho das particulas, da pressao do disparador e do tempo de disparo. Por ser
insolGvel em &cido, a remocdo das particulas de 6xido de aluminio é dificil, o que pode fazer
com que particulas continuem aderidas e interfiram no processo de osseointegracao.

Outro fator que interfere na escolha deste tipo de tratamento reside no fato de que ele
proporciona uma superficie com caracteristicas quimicas muito heterogéneas, que interferem
na resisténcia da superficie do implante a corrosdo (LE GUEHENNEC et al., 2007).

O tratamento por jateamento seguido de tratamento com acido combina a
macrotexturizacdo proporcionada pelo jateamento, com a microtexturizacdo proporcionada

pelo ataque &cido. A textura obtida desta forma é bastante homogénea, fator este que auxilia no
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processo de integracdo do implante. O jateamento, neste caso, é feito com areia, seguido por
tratamento com &cido. A estabilidade secundaria destes implantes se mostrou maior do que em
outros tratamentos (GEHRKE et al., 2011).

Feixes de laser podem ser usados para modificar a superficie do implante de forma a
produzir erosdes e rugosidade. Por néo ter interacdo nem interferéncia de nenhum material
externo, € considerado um tratamento limpo, produzindo rugosidade controlada e alto grau de
pureza, que garantem uma boa osseointegracao. Outra vantagem deste método é que ele permite
a criacdo de pontos de textura em locais definidos da superficie. Por ndo envolver nenhum
elemento quimico, a técnica fica livre da contaminacgdo da camada de 6xido de titanio (MALUF
etal., 2007).

A nanotexturizacdo consiste na aplicacdo de uma camada extra de Oxido de titanio,
obtida pela aplicacao de potencial elétrico, usado o implante como um anodo. O campo elétrico
guiado aumenta a espessura da camada de ¢éxido de titdnio do implante. A adigdo de outros
elementos, como o fosfato, potencializa a osseointegracdo. A oxidacdo do implante promove
modificacGes em sua superficie que melhoram a adesao e a orientacdo das células, resultando

em uma osseointegracdo mais rapida e eficiente (THAKRAL et al., 2014).

2.2.2 Laser — LIPSS

Desde a descoberta de estruturas de superficie periddicas induzidas por laser (LIPSS)
por Birnbaum em 1965, este topico evoluiu para uma perenidade cientifica. Com a ampla
disponibilidade de pulsos de laser ultracurtos e sua capacidade de gerar estruturas de superficie
periédicas com dimensdes submicrométricas , muitos pesquisadores estudaram seus
mecanismos de formacgdo em experimentos com pulsos ultrarrapidos para alcancar periodos
cada vez menores (BONSE et al., 2016).

Apos a irradiacdo de sdlidos com pulsos de laser ultracurtos polarizados linearmente
(durac@es de pulso de fs a ps) no ar sob incidéncia normal, geralmente dois tipos distintos de
LIPSS sdo observados, os paralelos e os perpendiculares a orientacdo de polarizacdo do feixe.
Para materiais que absorvem fortemente a radiagdo laser, na maioria dos casos, 0s chamados
LIPSS de baixa frequéncia espacial (LSFL) sdo observados com uma periodicidade (A)
proxima ao comprimento de onda de irradiacdo (A) e uma linha de orientacdo perpendicular a
direcdo de polarizagdo do feixe. Em materiais transparentes (dielétricos) LIPSS de alta
frequéncia espacial (HSFL) foram relatados com periodos significativamente menores do que
0 comprimento de onda de irradiacdo (A) e com orientagdes paralelas ou perpendiculares a
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polarizagdo do feixe de laser. Atualmente é geralmente aceito que os LSFL séo gerados pela
interferéncia do feixe de laser incidente com uma onda eletromagnética de superficie gerada na
superficie rugosa, que pode incluir a excitacdo de polarizac6es de plasma de superficie (BONSE
etal., 2013).

LIPSS podem ser geradas tanto em irradiagdo "estatica” de um unico ponto de superficie
ou em processamento "dinamico™ (varredura), onde o feixe de laser e a superficie sdo movidos
um em relacdo ao outro (normalmente a uma velocidade constante v e em forma sinuosa).

A vantagem Obvia da fabricacdo de LIPSS é a simplicidade e a robustez do processo, ou seja,
as nanoestruturas podem ser obtidas de forma confiavel em uma Unica etapa de processo (sem

contato) em ambiente de ar sem necessidade de vacuo. (BONSE et al., 2013).
2.3 Andlise de Dados

Esse trabalho utiliza algoritmos de aprendizado de maquina para trazer uma nova
perspectiva para as analises de dados de rugosidade, diferentemente do que normalmente é
adotado no modelo tradicional de analise de dados, com o emprego de tabelas e elaboragdo de
graficos como o histograma, por exemplo. Dentro desse ambiente de machine learning
(aprendizado de maquina), os algoritmos aprendem por experiéncia e incrementam seu
desempenho com o passar do tempo. Essa abordagem normalmente é empregada para a
deteccdo de padrdes em dados, tanto para a automatizacéo de tarefas complexas ou para efetuar
predigdes (INAZAWA et al, 2019).

De acordo com Costa Filho et al (2019), o aprendizado de maquina (AM) é um campo
da inteligéncia artificial direcionado para o desenvolvimento de sistemas capazes de instigar
hipteses ou aproximar funcGes a partir de experiéncias acumuladas em problemas
anteriormente tratados (COSTA FILHO et al, 2019).

Para os autores, as decisbes adotadas por algoritmos de AM tém como base o
aprendizado indutivo, que pode ser dividido em duas classes: (i) supervisionado, quando o
propdsito é a resolucao de problemas de regresséo ou de classificacao, e (ii) ndo supervisionado,
quando a tarefa é de agrupamento (clustering) ou associacdo (COSTA FILHO et al, 2019).
Esses e outros conceitos adotados em Estatistica sdo apresentados nos subcapitulos 2.3.1 e
2.3.2.
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2.3.1 Estatistica

Na forma mais comum e praticada de analise, a organizacao dos dados € realizada por
meio do agrupamento em tabelas de frequéncia que se mostra uma maneira muito eficaz para
realizar a analise de um conjunto de dados. Sob a forma de agrupamentos, os dados também
podem ser representados graficamente com a utilizacdo de histogramas e diagramas de caixa
(boxplot) (DOMINGUES, DOMINGUES, 2010).

Para Behr et al (2008), o histograma é uma ferramenta com uma exterioridade proxima
ao diagrama de Pareto, que contempla a medicdo de dados (tempo, distancia, temperatura,
velocidade, altura, entre outros), retratando sua distribuicdo conforme a frequéncia em que
aparecem. Esta técnica mostra-se interessante, pois apresenta de modo visual a concentracdo
dos dados identificados, permitindo a analise de suas variacdes no decorrer do tempo.

A montagem do histograma é facil e apoia-se em conceitos estatisticos, como:

a. conhecer o tamanho da populacéo pesquisada;

b. definir a amplitude da populagdo, isto é, conhecer a diferenca entre o0s
extremos, maior e menor, presente na populacao;

c. separar a amplitude em classes ou categorias. Quanto maior o nimero de
classes dos dados, mais precisa torna-se a analise, porém recomenda-se que seja um
namero inferior a 12 para ndo dificultar a analise;

d. estabelecer o limite e o tamanho, com valor inicial e valor determinado para
saber como ocorrera a distribuicdo da populacéo;

e. elaborar uma tabela da frequéncia em que os dados estéo presentes;

f. montar o histograma tendo como base a tabela de frequéncia.

Vale ressaltar que o histograma traz toda a populacgao analisada e ndo somente sua regido
perto da média (BERH et al, 2008).

J& o boxplot, de acordo com Domingues e Domingues (2010), trata-se de um gréafico
que permite reproduzir a distribuicdo de um conjunto de dados tendo como base alguns de seus
parametros descritivos, podendo ser a mediana (Q2), o quartil inferior (Q1), o quartil superior
(Q3) e o intervalo interquartil (IQR = Q3 - Q1). Esse tipo de grafico é muito util para a
comparacao de conjuntos de dados diferentes, sendo necessario para isso que se utilize a mesma
escala para ambos conjuntos de dados (DOMINGUES, DOMINGUES, 2010).
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2.3.2 Inteligéncia Atrtificial

De acordo com Mateus et al (2020), inteligéncia artificial pode ser definida como a
capacidade de os programas computacionais executarem operacGes de forma que se possa
acreditar que estejam imitando os processos de raciocinio humano. Tais processos foram
agrupados em seis tipos de 1A: (1) Aprendizado de maquina, (2) Processamento de linguagem
natural, (3) Reconhecimento de fala, (4) Reconhecimento de imagens, (5) Robotica e (6)
Planejamento (MATEUS et al, 2020).

Figura 3 - Tipos de inteligéncia artificial agrupados por processos

Processos de
Inteligéncia Artificial

v
Aprendizado Processamento de Reconhecimento Reconhecimento

de Maquina Linguagem Natural da Fala de Imagens Robética Planejamento

Fonte: Mateus et al (2020).

Com foco no primeiro tipo de 1A, o aprendizado de méquina, utilizado neste trabalho,
engloba o desenvolvimento de algoritmos que possibilitam o sistema aprender com situagoes
passadas (dados historicos), identificar padrées por meio de métodos estatisticos, efetuar uma
determinacdo ou progndstico e automaticamente melhorar seu desempenho. No proximo

subcapitulo este assunto é tratado com mais detalhes.

2.3.3 Aprendizado de Maquina

Existem quatro técnicas principais de modelagem de aprendizado de maquina:
Aprendizado supervisionado, Aprendizado ndo supervisionado, Aprendizado semi-
supervisionado e Aprendizado por reforco. A Figura 4 apresenta as categorias de aprendizado
de maquina. (MATEUS et al, 2020)
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Figura 4 - Técnicas de aprendizado de maquina por categorias
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Fonte: Mateus et al (2020).

De acordo com Mateus et al (2020), a principal diferenca entre as técnicas empregadas
no aprendizado de maquina, especificamente nos casos enquadrados como supervisionado e
ndo supervisionado, é o fato de que os algoritmos do aprendizado de maquina supervisionados
serem praticados em agrupamentos de dados rotulados que direcionam o algoritmo a entender
quais recursos sdo relevantes para a solucéo do problema em questao. Por sua vez, os algoritmos
néo supervisionados séo preparados com dados nédo rotulados e devem estabelecer a relevancia
do recurso por critério proprio, de acordo com os padrdes ligados a amostra.

A aprendizagem supervisionada tem como base dados preparados para treinamento
quando se conhece o destino de cada registro de um conjunto de dados. Na aprendizagem nao
supervisionada, os algoritmos procuram padrdes em registros com caracteristicas semelhantes,
comparando os valores dos seus atributos. Esse tipo de aprendizagem (ndo supervisionada) é
costumeiramente aplicada em problemas de agrupamento (também conhecidos como
clusterizacdo) ou na reducédo da dimenséo de conjuntos de dados multivariados (FERNANDES
et al, 2019).

Normalmente o aprendizado supervisionado é aplicado para realizar progndstico sobre
eventos. Ja o aprendizado ndo supervisionado € empregado, via de regra, para a descri¢cdo de
eventos ainda desconhecidos (MATEUS et al, 2020).

Para a técnica de aprendizagem semi-supervisionada, os dados obtidos apresentam-se
como uma composi¢do de dados rotulados e ndo rotulados. Essa combina¢do normalmente é
empregada para desenvolver um modelo especifico de classificacdo dos dados. O método de
aprendizado por reforco visa usar observacOes reunidas a partir da interacdo com o meio

ambiente para tirar agfes que maximizam o ganho ou minimizam o risco. Dessa forma, com 0
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uso deste método, é possivel determinar o comportamento ideal que um algoritmo deve

apresentar dentro de um contexto especifico (MATEUS et al., 2020).

2.3.4 Analise de Componentes Principais

A anélise de componentes principais (do inglés, Principal Component Analysis — PCA)
é um método de reducdo de dimensionalidade, mais especificamente, de extracao de variaveis.
Seu objetivo é maximizar a representacdo da variancia dos dados através da geracdo de M novas
direcdes (M < p) em que os dados serdo projetados. Essas novas direcGes sdo chamadas
componentes principais (do inglés, principal components — PC) e sdo obtidas através da
aplicacdo dos conceitos de autovetores e autovalores de algebra linear sobre a matriz de
covariancia dos dados (GARETH et al., 2013).

Métodos de reducdo de dimensionalidade possuem como objetivo reduzir o nimero total
de variaveis p (considerando uma matriz n x p) e representar os dados em um conjunto de
variaveis principais. Sdo muito utilizados em aprendizado de maquina para reduzir tempos de
processamento, economizar espago de armazenamento e possibilitar visualizagbes em duas e
trés dimensdes. Eles sdo dividios em métodos de selecdo de variaveis e de extracdo de variaveis.

O primeiro componente principal (PC1) € a direcdo que, ao projetar-se os valores sobre
ela, maximiza a variancia dos dados. O segundo componente principal (PC2) ¢é a direcéo,
ortogonal ao PC1, em que ha a segunda maior variancia dos dados. A Figura 5 traz visualmente
0 conceito. E apresentado, como exemplo, um gréfico de dispersdo de populacio por gastos em
midia. A linha cheia representa o PC1, a direcdo em que ha a maior variancia de dados,
perperndicular ao PC1 tem-se o PC2 em linha pontilhada, que € a direcdo em que ha segunda
maior variancia de dados. Neste caso dois componentes principais conseguem representar a

totalidade da variancia dos dados, pois ha apenas duas variaveis consideradas.
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Figura 5 - Exemplificacdo do conceito de componentes principais
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Fonte: Adaptado de GARETH et al (2013).
2.3.5 Clusterizacéo

Clustering ou métodos de agrupamento sdo empregados para separar objetos de dados
em grupos ou, de outra forma, como uma etapa de pré-processamento para submisséo a outros
algoritmos. Sao identificados como aprendizado ndo supervisionado em razdo das informacoes
do rétulo de classe ndo estarem presentes (SILVA, 2018). Para o autor, trata-se basicamente de
colocar em um mesmo grupo objetos similares, de acordo com algum critério, de maneira que
as caracteristicas desses objetos do grupo sejam semelhantes entre si e diferentes dos objetos
dos outros grupos.

Os métodos de agrupamento podem ser classificados de varias formas, mas basicamente
sdo adotadas as seguintes categorias de métodos: hierarquicos, particionais e baseados em
densidade. Os métodos hierarquicos formam um conjunto de dados em uma estrutura
hierdrquica de acordo com a proximidade dos elementos. Normalmente, 0os grupos sao
representados por uma arvore que separa a base de dados em subconjuntos menores. Nesta
representacdo, um elemento tem a sua representacédo pela folha da arvore, sendo que a juncéo
de todos os elementos apresenta-se representado pela raiz. No método hierarquico é essencial
determinar uma distancia de corte para que sejam identificados os grupos formados. Assim, é
muito importante ter conhecimento sobre a estrutura dos dados e do objetivo da analise para
estabelecer o corte que ira separar 0s grupos. Ja 0s métodos particionais relinem apenas grupos

de formato circular ou esférico, enquanto os métodos baseados em densidade tém a capacidade
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de identificar grupos de formato irregular ou aleatério, além de serem eficientes para encontrar
distorcdes (SILVA, 2018).
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3 METODOS E FERRAMENTAS

As informac0Oes referentes aos corpos de provas, sistemas de laser e topografia de
superficie foram obtidos em (UHLMANN et al., 2019)

3.1 Corpos de Prova

Os corpos de prova sdo discos de titdnio com diametro de 10mm e espessura de 2mm
que foram fornecidos pelo fabricante de implantes dentarios A.K.TEK MEDIZINTECHNIK
GMBH, Hagen, Alemanha. Eles foram gerados a partir da liga metalica de Ti-6Al-4V grau 5
para uso biomédico fornecido por HIGH TECH ALLOYS SONDERWERKSTOFFE GMBH,
Wouppertal, Alemanha.

3.2 Sistemas de Laser

Foram utilizados dois diferentes sistemas para geragéo da nanotexturizacdo, ambos com
a mesma fonte de pulsos ultracurtos Talisker-Three, COHERENT, Santa Clara, Estdos Unidos

da América. Os detalhes técnicos das maquinas utilizadas séo apresentados:

o Méaquina de Laser 1: Modelo LMBS 3W-015-xy300z200-1A de
LASERMIKROTECHNOLOGIE DR. KIEBURG GMBH, Berlim, Alemanha. A
maquina possui poténcia média de feixe PL = 3W e didmetro dy = 16um na posicéo de
foco. A terceira harménica Auv = 355nm foi utilizada.

o Maquina de Laser 2: Modelo MJ-Series de OXFORD LASERS LTD, Didcot-
Oxford, Reino Unido. A maquina possui poténcia média de feixe P = 8W e diametro

du = 16um na posicédo de foco. A segunda harménica Agr = 532nm foi utilizada.

3.3 Topografia de superficie

A avaliacdo quantitativa dos pardmetros de superficie foram obtidas através de
microscopia de forca atdbmica, utilizando o microscépio NanoWizard 11, JPK INSTRUMENTS,
Berlim, Alemanha. O software livre Gwyddion® foi utilizado para avaliar o perfil das
superficies.

Para o presente estudo foram considerados os seguintes parametros de superficie:

o Ra: Rugosidade aritmética principal de perfil.

o R;: Rugosidade de altura maxima de perfil.



38

o Sa: Rugosidade aritmética principal de area.
o Sz: Rugosidade de altura méxima de area.

o Ssk: Assimetria de altura da topografia.

o Sku: Curtose de altura da topografia.

3.4 Aplicacédo de Algoritmos

Todo o codigo foi escrito em linguagem Python e aplicado utilizando-se o software livre
Jupyter Notebooks. As principais bibliotecas utilizadas foram:

o Numpy e Pandas: bibliotecas fundamentais para manipulacdo geral de dados.
Numpy opera dados em forma de arrays enquanto Pandas opera em forma de dataframe.
o Matplotlib e Seaborn: bibliotecas para geracdo de visualizacdes (Histogramas,
Boxplots e Diagramas de Dispersao).

o Sklearn: contém as funcGes de normalizacdo e analise de componentes
principais.

o Scipy: contém a funcéo de agrupamento hierarquico.
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4 ANALISE DE RESULTADOS E DISCUSSAO

A fim de demonstrar a utilidade que técnicas de aprendizado de maquina podem oferecer
ao processo de desenvolvimento de tecnologia serdo comparadas duas técnicas de estatistica
descritiva tradicionais, histograma e boxplot, com os métodos de andlise dos componentes
principais e agrupamento hierarquico (clusterizacéo).

Primeiramente apresenta-se como os dados obtidos sdo organizados. Ha 3 categorias de corpos
de prova:

o CP (Referéncia): Gerados com a mesma tecnologia empregada nos atuais

implantes dentérios;

o UV-LIPSS: Gerados a partir da tecnologia LIPSS utilizando comprimento de

onda na faixa dos raios ultravioleta (Auv = 355 nm);

o GR-LIPSS: Gerados a partir da tecnologia LIPSS utilizando comprimento de

onda na faixa da luz verde (Aer = 532 nm).

Para CP foram produzidos 5 corpos de prova, para UV-LIPSS e GR-LIPSS foram
desenvolvidos 45 corpos de prova em cada categoria, totalizando 95 corpos de prova. Como
sera demonstrado, os corpos de prova CP, por serem oriundos de técnicas de fabricagdo ja

estabelecidas, apresentam grande estabilidade e pouca variacdo nos valores de mensuracao.

4.1 Histograma

O histograma traz graficamente informacdes sobre a frequéncia de distribuicdo das
medidas em colunas, que estabelecem o limite inferior e o limite superior considerados nos
intervalos que determinam a coluna. Pode-se, assim, observar se existem concentragdes em
torno de certos valores.

Observa-se ja aqui uma limitag&o de anélise devido a caracteristica de poucos corpos de
prova disponiveis para medicao, especialmente para a categoria de referéncia (CP). A Figura 6

apresenta o histograma R para as trés categorias.
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Figura 6 - Histograma de R, nas categorias [nm]
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Fonte: Autor (2021).

O histograma de CP apresenta quatro colunas de distribuicdo, com apenas duas com
frequéncia nos intervalos [0,98 nm, 1,18 nm) e (1,57 nm, 1,77 nm]. No primeiro intervalo
preenchido existem duas observacdes e no segundo, trés. Quanto a UV-LIPSS e GR-LIPSS,
por existirem 45 corpos de prova em cada, tem-se oito colunas que resumem a distribui¢do. Em
UV pode-se inferir que ha dois picos de distribuicdo e em GR uma ilha.

A forma apresentada de comparacao das categorias apresenta duas principais limitacoes:
falta de referéncia nos eixos para comparacao e intervalos de tamanhos diferentes para cada
categoria. Em CP, a primeira coluna preenchida possui limite inferior de 0,98 nm e a segunda
limite superior de 1,77 nm. Os intervalos possuem tamanho 0,20 nm. Em UV-LIPSS o limite
inferior minimo é 3,26 nm e o superior méximo 20,37 nm, com intervalo de tamanho 2,14 nm.
Em GR-LIPSS o limite inferior minimo € 11,60 nm e o superior maximo 34,61 nm, com
intervalo de 2,88 nm. Para cada medida em cada categoria os limites e tamanhos dos intervalos
se ajustam a distribuicdo das medidas que contemplam, o que se torna outro obstaculo na
obtencgdo de melhor entendimento e conclusoes.

O histograma €, portanto, pouco esclarecedor quanto a forma da distribuicdo. Além
disso, os 3 graficos resumem a distribuicdo de apenas uma medida. Considerando 6 medidas e
3 categorias ha um total de 18 possiveis graficos, o que torna a andlise onerosa e pouco
conclusiva. A Figura 7 apresenta um diagrama dos 18 histogramas possiveis.



Figura 7 - Histogramas possiveis considerando 3 categorias e 6 parametros
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Em resumo, considerando o baixo volume de corpos de prova e, portanto, de medidas,
caracteristica bastante encontrada no ambito do desenvolvimento de tecnologia, o histograma
se mostra um método pouco esclarecedor quanto a busca por entandimento a partir de
comparagOes. A seguir, sdo apresentados e analisados 0os mesmos dados utilizando a

visualizagdo de boxplot.
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4.2 Boxplot ou Diagrama de Caixa

O boxplot oferece uma visualizacdo de dispersdo, simetria, maximos e minimos,
podendo ainda destacar valores discrepantes em relacdo aos outros, chamados também de
outliers.

Para montar um boxplot sdo calculadas 5 medidas estatisticas basicas: média, mediana,
desvio padréo, valor minimo e maximo e o 1° e 3° quartis. A Tabela 1 e a Figura 8 demonstram
os célculos e resultado grafico do boxplot para os parametros Ra e R; nas trés categorias de
corpos de prova. A linha que corta a coluna representa a mediana, os limites da coluna, os
quartis, e as extremidades das linhas verticais o valor maximo e minimo. Um marcador “x”

representa a média.

Tabela 1 - Medidas estatisticas para a producao de boxplot de Ra € R,

Medida Ra [nm] Rz [nm]

Estatistica CP UV-LIPSS GR-LIPSS CP UV-LIPSS GR-LIPSS
N° Observagdes 5 45 45 5 45 45
Média 1,43 10,30 22,36 12,96 75,98 153,43
Desvio Padrdo 0,40 4,69 7,37 3,93 29,57 53,34
Valor Minimo 0,98 3,26 11,60 9,21 35,54 70,37
1° Quartil 1,01 6,56 16,85 9,49 46,36 110,02
Mediana 1,69 8,63 21,10 13,58 79,43 155,64
3° Quartil 1,69 13,25 26,21 13,66 106,10 195,07

Valor Maximo 1,77 20,37 34,61 18,86 128,31 262,01

Fonte: Autor (2021).

Figura 8 - Boxplots de R, e R, nas categorias
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Fonte: Autor (2021).

Na categoria de referéncia CP, cada uma das 5 medidas estatisticas consideradas para a

construcdo do boxplot estd representada por uma das 5 observacdes existentes. Apesar da
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evidente limitagdo de anélise, € didatico observar visualmente como se diferenciam os corpos
de prova gerados por métodos de fabricacdo ja consolidados e que possuem o objetivo de ser o
menos rugosos possivel frente as superficies geradas por LIPSS. Outro ponto a se considerar é
que agora hé clareza através de comparacao visual para comprovar que a categoria de referéncia
cumpre seu proposito de buscar ser o0 menos rugosa possivel. Ja as outras categorias permitem
uma analise mais completa acerca da distribuicdo de seus valores.

Considerando Ra, na categoria UV-LIPPS o valor minimo (3,26 nm) registrado é maior
que 0 maximo registrado para CP. O valor do primeiro quartil (6,56 nm) indica que 25% das
observacdes ficam abaixo desse valor, em contrapartida 25% das observagGes ficam acima de
13,25 nm, como indicado pelo terceiro quartil, e o valor maximo é 20,37 nm. O valor da é 8,63
nm. O valor médio calculado é 10,30 nm, maior que a mediana. Visualmente, a diferenca de
proporcdo em que a mediana corta a coluna indica assimetria na distribuigéo, resultando em
uma curva de distribuicao tendendo para a esquerda, como indicado também no histograma na
Figura 6.

Verifica-se que GR-LIPSS possui maior variacdo de dados, bem como valores maiores

de minimo e maximo. No entanto, a distribuicdo dos valores € mais simétrica que em UV-
LIPSS, observando o corte que a mediana faz no intervalo interquartil.
Em R;, é observado um comportamento muito semelhante ao analisado em Ra. A distribuicéo
de CP demonstra a busca pela superficie menos rugosa possivel. UV-LIPSS possui uma
variacdo consideravelmente menor quando comparado a GR-LIPSS, além de uma distribuicéo
em valores menores.

Analisando lado a lado as distribui¢fes de rugosidade média em &rea S, e S;, obtém-se

0 seguinte resultado, apresentado na Tabela 2 e Figura 9.

Tabela 2 - Medidas estatisticas para a producdo de boxplot de S; e S,

Medida Sa [nm] Sz [nm]
Estatistica CP UV-LIPSS GR-LIPSS CP UV-LIPSS GR-LIPSS

N° Observagdes 5 45 45 5 45 45

Média 24,21 71,34 97,82 148,49 486,14 754,98
Desvio Padréo 7,84 29,69 31,36 18,05 146,09 140,79
Valor Minimo 14,40 25,29 54,71 119,88 224,30 491,20
1° Quartil 17,19 50,96 79,01 147,89 378,60 642,50
Mediana 27,80 66,18 92,55 149,70 465,30 745,80
3° Quartil 30,62 85,96 108,71 155,72 553,60 845,90

Valor Méximo 31,03 176,24 210,85 169,25 852,70  1081,20
Fonte: Autor (2021).
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Figura 9 - Boxplots de S, e S; nas categorias
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Fonte: Autor (2021).

Mais uma vez, ocorre CP seguido de UV-LIPSS e depois GR-LIPSS. As distribuigdes
apresentam simetria. Os pontos fora dos limites das “abas”, representados por pontos, sao
denominados outliers, e indicam valores que superam o valor de 1,5 vez o valor superior
determinado pelo terceiro quartil ou 1,5 vez o valor inferior determinado pelo primeiro quartil.
E importante a identificagio desses valores para consideragio de possiveis impactos no estudo
a ser feito. Sdo corpos de prova que tiveram valores que se destacam em relacéo a distribuicéo,
e podem identificar algum erro de fabricacdo ou inconsisténcia.

As visualizacOes de boxplot das medidas assimetria estatistica (skewness — Ss) e curtose

(Sku) séo apresentadas na Figura 10.

Tabela 3 - Medidas estatisticas para a producdo de boxplot de Ss € Sk

Medida Ssk Sku
Estatistica CP UV-LIPSS GR-LIPSS CP UV-LIPSS GR-LIPSS

N° Observacdes 5 45 45 5 45 45

Meédia 0,05 0,28 -0,16 -0,67 -0.23 -0,18
Desvio Padrdo 0,01 0,88 0,53 0,63 1,19 0.87
Valor Minimo 0,04 -1,23 -2,82 -1,29 -141 -394
1° Quartil 0,04 -0,22 -0,36 -1,08 -1,00 -0,57
Mediana 0,05 0,25 -0,17 -0,98 -0,64 -0,19
3° Quartil 0,05 0,60 0,16 -0,04 -0,24 0.11
Valor Maximo 0,06 4,63 0,68 0,06 2,90 1,99

Fonte: Autor (2021).
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Figura 10 - Boxplots de S e Sky nas categorias
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Fonte: Autor (2021).

Em relacdo a assimetria, os corpos de prova de CP apresentam maior consisténcia; UV-
LIPSS demonstra uma maior variancia de assimetria em relacdo a GR-LIPSS e em cada uma
das categorias hd um outlier, em sentidos diferentes. Em curtose, todos os valores sdo menores
que 3, classificando os perfis de distribuicéo de rugosidade como platicurtica, que apresenta um
perfil achatado.

Os métodos de estatistica descritiva permitem a definicdo em medidas estatisticas da
distribuicdo dos corpos de prova. Os histogramas mostram as frequéncias de distribuicdo em
intervalos e os boxplots uma comparacgdo visual de 5 medidas estatisticas basicas, bem como a
identificacdo de outliers nos parametros especificos.

A seguir, sdo implementados algoritmos de aprendizado de maquina com o objetivo de
clusterizar as observagdes nao-rotuladas em grupos que consideram todos o0s parametros
medidos e a descoberta de grupos com caracteristicas semelhantes. Tal método ndo leva em
consideracdo a categoria & qual cada corpo de provas pertence, mas apenas os valores dos

parametros, que sdo previamente normalizados para correcdo das diferencas de grandeza.

4.3 Analise dos Componentes Principais

A proposta da clusterizacdo € permitir o agrupamento dos corpos de provas levando-se
em conta todas as medidas de todos os atributos de uma vez, consolidando o resultado em uma
visualizacdo simples que revela compreensfes outrora ndo visiveis pela complexidade e

tamanho dos dados. E uma das técnicas mais extensamente utilizada em Big Data. No contexto
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de desenvolvimento de tecnologia hd um namero limitado de observagdes e parametros a se
considerar, nesse caso, existe um total de 95 corpos de prova e 6 parametros de medida.

Utilizando o sofware Jupyter Notebooks e linguagem Python, implementam-se os
algoritmos necessarios. Nos proximos paragrafos sdo descritos 0s passos para preparar os dados
para a clusterizacdo em si, destacando e discutindo os pontos relevantes para entendimento do
resultado final.

Apbs carregamento dos dados em Python a partir de uma planilha Excel, separam-se
apenas as 6 colunas com os parametros a serem analisados, resultando em uma matriz de
tamanho 95 x 6. O primeiro passo de tratamento dos dados é a normalizacdo deles dentro de
cada atributo, evitando-se, assim, que haja um enviesamento devido as diferentes grandezas dos
atributos. No caso estudado, por exemplo, tem-se que Ra possui valor minimo de 0,98 nm e
méaximo de 34,61 nm, enquanto para R; 0 minimo é 9,21 nm e 0 maximo 262,01 nm. Como o
método de clusterizacdo utiliza a distancia euclidiana dos pontos para realizar o agrupamento,
faz-se necessario a normalizacdo para ajuste da comparacdo relativa dentro de cada atributo. A

descricdo da matriz resultante € apresentado na Tabela 4.

Tabela 4 - Resultado da normalizag8o dos valores dos pardmetros
Medida Medida

Estatistica Ra[mn|  Rz[mm]  Sa[mm]  Sz[mm] Ssk Sku Estatistica Ra[om] Rz[om]  Sa[mnm]  Sz[nm] Ssk Sku
Media 15.55 109,35 81.40 595,72 0.06 -0.23 Meédia 0.00 0.00 0.00 0,00 0,00 0,00
Desvio Padrao 9.04 60.82 3503 218,66 0,73 102 Desvio Padrao 1.01 1.01 1.01 1,01 1.01 1.01
Valor Miimo 095 921 1440 11988 28 -394 == ValorMuimo 162 -166  -192 219 395 365
1° Quarti 7.99 60.76 60,51 146,30 -0.24 -0.86 17 Quartil -0.84 -0,80 -0.60 -0.69 -0.41 -0,62
Mediana 13.58 97.55 79.01 61032 0,04 -0.40 Mediana -0,22 -0.20 -0,07 0,07 -0,03 -0,16
3° Quart| 20,76 147.03 97,74 754.00 034 0.05 3% Quartil 0.58 0.62 047 0.73 0.38 0.28
Valor Maximo 3461 262.01 21085 1081.20 463 290 Valor Maximo 212 2,52 3.71 2.23 6.26 3.08

Fonte: Autor (2021).

Uma vez normalizados os atributos, implementa-se a analise de componentes principais
(do inglés, Principal Component Analysis - PCA). Essa técnica € uma aplicacdo pratica dos
conceitos de autovalores e autovetores estudados em algebra linear. Basicamente, uma matriz
com 6 atributos, possui 6 componentes principais. O primeiro componente principal (PC1) é
um vetor que se estende na direcdo em que ha a maior variancia de dados; o segundo
componente principal (PC2) é um vetor que se estende na direcdo em que ha a segunda maior
variancia de dados, ortogonal (perpendicular, no caso bidimensional) ao PC1; o terceiro
componente principal (PC3) segue a mesma logica, mantendo a ortogonalidade dos vetores; e
assim por diante até o sexto componente principal. Um dos resultados, apresentado na Figura
11, é a ordenacdo descrescente do percentual da variancia explicada dos dados que cada

componente principal representa, uma vez projetados os pontos nas dire¢des definidas.



Figura 11 - Percentual de variancia explicada por componente principal
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O primeiro componente principal representa 49,5% da variancia total da base de dados.

O segundo representa 21,4%, o terceiro 15,5%, o quarto 10,8%, o quinto 2,0%, o sexto e Gltimo

apenas 0,8%. Logo, os trés primeiros componentes principais representam 86,4% da variancia

total dos dados, sendo que os Ultimos trés componentes principais representam apenas 13,6%.

O principal retorno da aplicacdo do algoritmo de analise de componentes principais é a

projecdo dos valores de atributos nos 6 componentes principais gerados, apresentado na Tabela

5.
Tabela 5 - Proje¢do dos valores normalizados nos componentes principais

D Ra Rz Sa Sz Ssk Sku D PC1 PC2 PC3 PC4 PC3 PC6
CP 1 -1.54 -1.50 -1.92 -2.19 -0.03 0.19 CP_ 1 352 0.24 -0.79 0,22 0,14 0,01
CP 2 -1.62 -1.66 -1.45 -1.96 -0.01 -1.04 CP 2 335 -0.88 -0.18 0,57 -0.08 -0.03
CP_3 -1.62 -1.65 -1.84 -2.02 0.00 0.28 CP_3 3.52 0.27 -0.66 0,00 0.05 -0.02
uv_l -0.78 -0.89 -0.19 0.12 -0.41 -0.47 Uv_.1 0.86 -0.75 0,10 -0.49 -0.53 0,06
Uv.2 -0.95 -1.12 -0.44 -0.29 -0.35 -0.11 uv.2 1.37 -0.44 -0.05 -0.58 -0.36 -0,02
Uv_3 -1.00 -1.11 -0.93 -1.00 -0.38 -0.01 Uv_3 1.97 -0.25 -0.49 -0.24 -0.10 -0.04
GR_1 -0.34 -0.61 -0.60 0.10 0.14 0.76 GR_1 0.69 0.70 -0.12 -0.55 -0.40 -0.09
GR_2 -0.22 -0.43 1.38 1.84 -0.34 -0.81 GR 2 -1.22 -1.29 1.14 -1.07 -0.85 0.05
GR_3 -0.44 -0.64 -0.48 -0.48 -0.38 0.01 GR 3 0,98 -0.20 -0.39 -022 -0.09 -0.11

Fonte: Autor (2021).

Os trés primeiros componentes principais, por representarem 86,4% da variancia dos

dados, sdo escolhidos para serem eixos e projetam-se os valores normalizados das observacoes

nesses eixos. O resultado é um grafico de dispersao, apresentado na Figura 12.
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Figura 12 - Gréficos de dispersdo das projecdes das observacdes nos 3 primeiros componentes principais
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Fonte: Autor (2021).

Esse é um primeiro resultado muito consistente que o método PCA permite visualizar.
A partir de 6 atributos foram separados 3 novos eixos que permitem a geracdo de visualizagdes
em 2 e 3 dimensdes e as descobertas de novos entendimentos.

Outro retorno do algoritmo de PCA é a influéncia que cada atributo inicial teve na
geracao de cada componente principal. Na Tabela 6, pode-se observar o valor normalizado que
apresenta as influéncias. Por exemplo, o PC1 possui nos parametros de rugosidade (Ra, Rz, Sa
e S;) as maiores influéncias em sua geracdo, em relagdo aos parametros de distribuicdo das
rugosidades. Em contrapartida, 0 PC2 possui Ssk € Sku como os principais influenciadores. Ja o
PC3 possui em Ssk € Sa 0s atributos que mais influenciaram. Os valores em moédulo séo
considerados, sendo que o sinal negativo indica apenas um dos sentidos das dire¢cfes definidas,
resquicio dos métodos de algebra linear aplicados. A Figura 13 traz visualmente a informacéo
dessa influéncia. Com o0s componentes principais como eixos, sdo plotados vetores com 0s
valores de cada atributo e tem-se uma representacéo visual que deixa claro o fator de influéncia

de cada atributo na geragdo dos componentes principais.



Tabela 6 - Influéncia de cada atributo nos componentes principais

Componente Principal Ra Rz Sa Sz Ssk Sku
PC1 -0,52 -0,52 -0,42 -0,52 0,10 -0,02
PC2 0,15 0,16 -0,33 0,03 0,51 0,76
PC3 -0,25 -0,20 0,48 0,22 0,75 -0,22
PC4 0,35 0,39 -0,37 -0,34 0,39 -0,56
PC5 -0,03 0,28 0,58 -0,73 -0,02 0,24
PC6 -0,72 0,66 -0,13 0,17 -0,04 -0,03

Fonte: Autor (2021).
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4.4 Clusterizacao Hierarquica

-04
-0.6

04

02
pCl

0.2

08

06

04

0z

0o

49

Ssk

04 -02 0O

02 04
PC2

06

VL]

Enguanto a analise dos componentes principais objetiva a reducdo de dimensionalidade

para possibilitar a plotagem do gréfico de dispersdo em 2 e 3 dimens0es, a clusterizacdo é o

método que ira efetivamente agrupar as observagdes, baseado em medidas euclidianas de

distancia, considerando-se os valores normalizados resultantes do algoritmo de PCA.

Uma forma bastante direta de visualizar como a agregacdo acontece é por meio do

dendrograma. O dendrograma traz uma visualizag@o de “arvore” em que cada no6 representa um

agrupamento. No limite inferior ha todas as “folhas”, que sdo as observacdes em si, também

chamadas de clusters unitarios. A partir dos clusters unitarios sdo calculados quais estdo mais

proximos e agrupam-se, definindo um novo cluster. Este processo é feito iterativamente.
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Figura 14 - Dendrograma do clustering hierarquico com corteem D =9
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Fonte: Autor (2021).

No limite das iteragdes forma-se apenas um grande cluster. Do dendrograma, pode-se
definir uma linha de corte a partir de um valor de distancia, representado na Figura 14 pela linha
horizontal preta. O nimero de linhas verticais que sdo cortadas pela linha preta define quantos
clusters sdo obtidos, no caso acima, definindo-se a Distancia = 9, resulta 4 clusters, destacados
a direita. Em parénteses, tem-se quantas observacGes fazem parte daquela linha e, no caso de
apresentar apenas uma observacdo, leva o indice que a identifica. A Tabela 7 apresenta a

distribuicéo da quantidade de observagdes nos clusters.

Tabela 7 - Distribuicdo das observagdes nos clusters - 4 clusters

Cluster CP GR-LIPSS UV-LIPSS

Magenta 0 2 10
Vermelho 0 20 2
Ciano 5 2 33
Verde 0 21 0

Fonte: Autor (2021).

Definidos a quais clusters as observacOes pertencem, pode-se plota-los em 2 e 3

dimensGes no grafico de dispersao obtido com a analise de componentes principais.
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Figura 15 - Clusterizacdo hierarquica - 4 clusters
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Cluster 0
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Cluster 3

Cada observacdo pertence a um dos 4 clusters e a partir das projecoes dos valores nos

componentes principais destaca-se visualmente a qual cluster cada observacdo pertence. No

grafico de dispersdo em duas dimens@es que considera o PC1 x PC2, pode-se observar que o

primeiro componente principal separa 3 faixas de clusters: o verde, o vermelho, e o par

ciano/magenta que apresentam valores de PC1 bastante similares. Estes dois ultimos sao

separados pelo segundo componente principal. Sabendo-se que o0s parametros que mais

influenciam na geragdo do PC1 séo Ra, Rz, Sa, Sz, conclui-se que o cluster verde, o vermelho e

0 par ciano/magenta possuem distribuicdes que s&o claramente diferenciadas em uma

combinacdo dos 4 parametros. Ja em termos do segundo componente principal, cujos

pardmetros Ssk € Sku possuem maior influéncia, o cluster magenta se destaca dos demais. Na

Figura 16 é apresentado um boxplot dos clusters encontrados. Aqui pode-se verificar e validar

as analises acima feitas.
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Figura 16 - Boxplots dos 6 parametros nos clusters - 4 clusters
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Fonte: Autor (2021).

Considerando a influéncia de cada atributo na geracdo dos componentes principais da
Figura 13, verifica-se que os atributos que definem o cluster verde, o vermelho e o par
ciano/magenta em termos PC1 sdo realmente as medidas de rugosidade Ra, R, Sa, S;. Para Ra
e R, a distribuicdo das medidas do cluster vermelho fica entre as distribui¢des do cluster verde

e ciano, enquanto para esses atributos o ciano e 0 magenta apresentam elevada intersec¢do. Em
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relacdo a interseccdo das distribuicdes em Sz e S; do cluster verde e do vermelho, pode-se
interpretar que representam a parte desses clusters que se interseccionam. O que separa o cluster
magenta dos outros € o PC2, cujas maiores influéncias sdo os atributos Ssk € Sku. No boxplot
fica evidente que a distribuicdo dos valores das observag6es do cluster magenta se destaca para
os atributos que definem o segundo componente principal.

Para efeitos de estudo, apresenta-se a clusterizacdo com 6 clusters, escolhendo-se um

corte em D = 7,5 no dendrograma, como apresentado na Figura 17.

Figura 17 - Dendrograma do clustering hierarquico com corteem D = 7,5
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Fonte: Autor (2021).

Com o corte em D = 7,5 observa-se que ndo houve nenhuma alteragdo no cluster
vermelho nem no verde. O cluster magenta e ciano na primeira clusterizagéo foram divididos
em 2 cada. A Tabela 8 apresenta a distribuicdo da quantidade de observacdes nos clusters e o

resultado pode ser visto no grafico de dispersao da Figura 18.



Fonte: Autor (2021).

Tabela 8 - Distribuicdo das observagdes nos clusters - 6 clusters

Cluster CP GR-LIPSS UV-LIPSS
Vermelho 0 20 2
Verde 0 21 0
Amarelo 0 2 9
Magenta 0 2 23
Azul 0 0 1
Ciano 5 0 10

Figura 18 - Clusterizacao hierarquica - 6 clusters
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A clusterizacdo com 6 clusters apresenta resultados interessantes. Primeiramente,

percebe-se que ha um cluster unitario, com uma Unica observacdo que ndo se agrupa com

nenhuma outra nessa faixa de corte de distancia. Esse € um exemplo de um outlier que a

clusterizacdo permitiu identificar. A partir dessa observacdo pode-se decidir excluir esse corpo

de prova do estudo, dado que potencialmente possa enviesar os resultados da pesquisa. Também

observa-se que cluster ciano na clusterizagdo com 4 clusters se quebrou em dois, um ciano e
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um magenta, muito bem definidos, ndo apresentando nenhuma intersec¢cdo em termos de PC1.

A Figura 19 apresenta os boxplots dos parametros para a clusterizacdo com 6 clusters.

Figura 19 - Boxplots dos 6 pardmetros nos clusters - 6 clusters
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Fonte: Autor (2021).

N&o houve nenhuma alteragdo no cluster verde nem no vermelho considerando a

cluterizacdo com 4 clusters, portanto a analise é a mesma da apresentada anteriormente. O
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cluster ciano e o magenta se diferenciam em termos de PC1, podendo-se observar claramente
a distingdo nas medidas de rugosidade Ra, Rz, Sa, Sz. A Unica diferenca do cluster amarelo na
clusterizacdo com 6 clusters para 0 magenta na clusterizacdo de 4 clusters foi o destaque do
outlier azul. Verifica-se que em ambas clusterizagdes no PC3 ndo houve diferenciacfes
relevantes para a analise, concluindo-se que dois componentes principais seriam o bastante para

a obtencdo da compreensao.
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5 CONCLUSAO

Com a realizacédo deste trabalho foi possivel apresentar um estudo de caso de aplicacao
de algoritmo de clusterizagdo hierarquica em um contexto de desenvolvimento de superficies
nanotexturizadas por laser em implantes dentarios, evidenciando uma nova perspectiva de
analise quantitativa e qualitativa de medidas de rugosidade, de forma complementar as analises
estatisticas tradicionais.

A nova perspectiva rompe com as limitacfes apresentadas pelos métodos de histograma
e boxplot, ndo mais limitando a analise dentro de categorias, mas permitindo uma visao holistica
baseada puramente nos valores medidos e em suas caracteristicas estatisticas inerentes.

A analise de componentes principais, enquanto método de reducdo de dimensionalidade,
permite uma analise visual de dados deixando claro as possiveis perdas de informacdo e
influéncias que cada parametro considerado possui na geracdo de novos eixos.

A clusterizacdo hierarquica, enquanto método nao-supervisionado de aprendizado de
maquina, cujo objetivo ndo remete a busca de uma variavel resposta, mas a descoberta de
padrdes de dados anteriormente ndo identificados e sua representacao visual, possibilitando
novos esclarecimentos, obtém sucesso e permite um aprofundamento das analises.

Destaca-se a importancia do aprendizado e uso das ferramentas de programacéo,
poderosas aliadas do engenheiro contemporaneo, bem como da premissa do conhecimento
técnico acerca dos objetos de estudo, nesse caso, medidas de rugosidade de superficie.

Ressalta-se 0 dominante uso de técnicas de aprendizado de maquina em contextos de
Big Data e do incipiente, mas promissor, uso dessas técnicas em contextos de desenvolvimento
de tecnologia. Apesar da limitacdo de quantidade de dados a ser considerada, inerente a tal
contexto, o estudo e entendimento da matematica por tras dos algoritmos de aprendizado de
maéaquina aliado ao conhecimento técnico do objeto de estudo e ao uso de ferramentas de
programacao permitiu a execucdo e analise dos dados com éxito. Encontra-se e um terreno fertil
de inimeras possibilidades de uso nos mais diversos contextos.

Em razdo do exposto, pode-se afirmar que o objetivo principal deste trabalho foi
alcancado, sendo concretizada a apresentacdo de aplicacdo de clusterizacdo hierarquica em
medidas de rugosidade de superficies nanotexturizadas em implantes dentarios.

Como sugestdo para futuro aprofundamento do trabalho recomenda-se a incluséo das
medidas bioldgicas, resumidas em um componente principal, no lugar do terceiro componente
principal. Assim, pode-se discriminar os clusters de acordo com o resultado bioldgico de suas

observacoes.
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Apéndice A — Codigo Python em Jupyter Notebook
Importacdo de Bibliotecas

In [ ]:

# pip install adjustText

# Ipip install nbconvert

# Ipip install seaborn==0.11.0

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from adjustText import adjust_text

from mpl_toolkits.mplot3d import axes3d
from matplotlib.ticker import AutoMinorlLocator
# import matplotlib.colors as mcolors
%matplotlib inline

Importacdo de Planilha Excel

In [ ]:
diretorio = "C:\\Diretorio\\"
arquivo = "Excel.xlsx"

df = pd.read_excel(diretorio + arquivo, header=0)

Validagéo

In [ ]:

round(df, ndigits=3).head()
# atributos = df.columns[2:]
# atributos

Exemplo

In [ ]:

df_CP = df[0:5]

df_UV = df[5:50]

df GR = df[50:]

df ex = df CP[©:3].append(df _UV[©:3])

df_ex = df_ex.append(df_GR[0:3])
round(df_ex, ndigits=2)



Descricdo do Dataset

In [ ]:

# dataset

# dataset. shape

# dataset.head(5)

# dataset.tail(5)

# dataset[dataset['Categoria’]=="UV-LIPSS'].describe()
# df[ 'Categoria’].groupby('Categoria’).describe()

# round(df[df[ 'Categoria’]=="UV-LIPSS'].describe(), ndigits = 3)
df_descr = round(df.groupby('Categoria’).describe(), ndigits = 3)
# df_descr

df descr.T

# df_descr

Declaracao de variaveis

atributos: parametros de mensuracao
categorias: categorias dos corpos de prova

In [ ]:

# atributos = ['Ra', 'Rz', 'Sa', 'Sz', 'Ssk', 'Sku']
atributos = df.columns[2:]

categorias = df['Categoria'].unique()

# atributos
# categorias

Histograma
Ra nas 3 Categorias

from matplotlib.ticker import AutoMinorlLocator
fig = plt.figure(figsize=(16,20), tight_layout=True)

# fig.tight Llayout(h_pad=106, w_pad=50)
k=1

colors ['b", 'm", "g']

caixas = [2,6,6]

for j in range(0,1):

for i in range(0,3):
ax = fig.add_subplot(6,3,k)
# fig, ax = plt.subplots(2,1,figsize=(12, 6), tight Llayout = True)
n, bins, patches = plt.hist(round(df[df['Categoria’']==categorias[i]].loc[:,atri
butos[j]], ndigits=2), color = colors[i], bins='rice'#, bins=caixas[1])

# define minor ticks and draw a grid with them
minor_locator = AutoMinorLocator(2)
plt.gca().xaxis.set_minor_locator(minor_locator)
plt.grid(which="minor"', color='white', 1lw = 0.5)
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# x ticks

xticks = [(bins[idx+1] + value)/2 for idx, value in enumerate(bins[:-1])]

xticks labels = [ "{:.2f}\na\n{:.2f}".format(value, bins[idx+1]) for idx, value
in enumerate(bins[:-1])]

plt.xticks(xticks, labels = xticks_ labels)

# remove major and minor ticks from the x axis, but keep the Llabels

ax.tick_params(axis="'x"', which="both',length=0)

# remove y ticks
plt.yticks([])

# Hide the right and top spines
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set visible(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

for idx, value in enumerate(n):
plt.text(xticks[idx], value+0.05, int(value), ha='center')

plt.title('Categoria: {1} - Parametro: {@}'.format(atributos[j], categorias[i
1), loc="center', fontsize=12)

k=k+1
k=k+1

Boxplot

my_pal = {"CP": "b", "UV-LIPSS": "m", "GR-LIPSS": "g"}
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 6))

i=0 # Ra e Rz
# 1=2 # Sa e Sz
# 1=4 # Ssk e Sku

sns.set_context("paper", font scale=1.5,
# rc={"font.size":9, "axes.titlesize":10, "axes.labelsize":5}

)
sns.boxplot(ax = axes[0], x=df["Categoria"], y=df[atributos[i]]

, palette=my_pal, showmeans = True, meanprops={"marker":"x", "markeredgecol
or":"black", "markersize":"10"})

sns.boxplot(ax = axes[1], x=df["Categoria"], y=df[atributos[i+1]]

, palette=my pal, showmeans = True, meanprops={"marker":"x", "markeredgecol
or":"black", "markersize":"10"})

Normalizagéo

Declaracao de variavel

obs_index: index das observacodes
x: valores dos parametros de mensuragao
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In [ ]:

obs_index _df = df.loc[:, ['ID']]

# obs_1index_df

obs_index = pd.DataFrame.to_numpy(obs_index_df, dtype=str)
# obs_ 1index

x = df.loc[:, atributos].values

Normalizagéo

In [ ]:

from sklearn.preprocessing import StandardScaler

x_norm = StandardScaler().fit_transform(x)

df_xnorm = pd.DataFrame(x_norm, columns = atributos, index = obs_index)

round(df_xnorm, ndigits=3).head()
# round(df_xnorm.describe(), ndigits=2)

Exemplo

df_xnorm_CP = df_xnorm[0:5]

df xnorm UV = df_xnorm[5:50]
df_xnorm_GR = df_xnorm[50:]

df _xnorm_ex = df_xnorm_CP[0:3].append(df_xnorm_UV[0@:3])
df_xnorm_ex = df_xnorm_ex.append(df_xnorm_GR[0:3])
round(df_xnorm_ex, ndigits=2)

Analise de Componentes Principais (Principal Component Analysis)

Declaracao de Variaveis

pca_index: Index dos Principal Components

In [ ]:

# n_components = 6

pca_index = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6']
# pca_1index[ :n_components]

pca_index



Aplicacédo codigo de Principal Component Analysis
In [ ]:
from sklearn.decomposition import PCA

n_components = 6
pca = PCA(n_components)

comp_princ = pca.fit_transform(x_norm)
df_pca = pd.DataFrame(data = comp_princ, columns = pca_index, index = obs_index)

round(df_pca.head(), ndigits=3)

Exemplo da Projecao dos valores nos PC's

In [ ]:

df_pca_CP = df_pca[0:5]

df pca_UV = df_pca[5:50]

df pca GR = df pca[50:]

df_pca_ex = df_pca_CP[0:3].append(df_pca_UV[0:3])

df _pca_ex = df_pca_ex.append(df _pca GR[©:3])
round(df_pca_ex, ndigits=2)

Barplot Proporcéao de Variancia Explicado

explained variance = pca.explained variance ratio
cummulative_expl_var = 0
#for 1 in range(len(explained variance)):
for i in range(n_components):
e = explained_variance[i]
cummulative_expl_var = cummulative_expl_var + e

fig = plt.figure(figsize=(8,5))

ax = fig.add_axes([9,0,1,1])

# ax.plot(pca_index, np.cumsum(pca.explained_variance ratio_ ), c = 'r')
barplot = ax.bar(pca_index, pca.explained_variance_ratio )

# remove y ticks
plt.yticks([])

# Hide the right and top spines
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set visible(False)
ax.spines[ 'right'].set_visible(False)
ax.spines['top'].set_visible(False)

for idx, rect in enumerate(barplot):
height = rect.get _height()
ax.text(rect.get_x() + rect.get_width()/2, 1.03*height
, hp.round(pca.explained_variance_ratio_*100,1)[idx], ha='center')
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Scatter Plot 3D

In [ ]:

fig = plt.figure(figsize=(16,12))
ax = fig.add_subplot(111l, projection = '3d")
ax.scatter(comp_princ[:, @], comp_princ[:, 1], comp_princ[:, 2], s=100)

ax.set_xlabel('PC1")
ax.set_ylabel('PC2")
ax.set zlabel('PC3")

Scatter Plot 3D + 2D Plots

fig = plt.figure(figsize=(15,12))
# fig.suptitle('Seu Titulo Aqui')

ax = fig.add_subplot(221, projection = '3d")

ax.scatter(comp_princ[:, 0], comp_princ[:, 1], comp_princ[:, 2], s=50)
ax.set_xlabel('PC1")

ax.set_ylabel('PC2")

ax.set_zlabel('PC3")

ax = fig.add_subplot(222)

ax.scatter(comp_princ[:, @], comp princ[:, 1], s=50)
ax.set_xlabel('PC1")

ax.set_ylabel('PC2")

ax = fig.add_subplot(223)

ax.scatter(comp_princ[:, 0], comp princ[:, 2], s=50)
ax.set xlabel('PC1")

ax.set_ylabel('PC3")

ax = fig.add_subplot(224)

ax.scatter(comp_princ[:, 1], comp_princ[:, 2], s=50)
ax.set xlabel('PC2")

ax.set_ylabel('PC3")

Influéncia de cada atributo nos Componentes Principais

In [ ]:

influencias = pd.DataFrame(np.round(pca.components .T,2)
,» columns = pca_index[:n_components]
, index = atributos)

influencias.T
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fig, ax = plt.subplots(figsize=(6, 4))

# ax = plt.subplots(311)

offset = 0.1

limites = np.min(pca.components_.T[:,1])-offset, np.max(pca.components_.T[:,1])+offset,
np.min(pca.components_.T[:,2])-offset, np.max(pca.components_.T[:,2]+offset)

limites = np.round(limites, 3)

ax.axis(limites)
colors = ['r', 'g', 'b"', 'c', 'm', 'y', 'k']

for i in range (9, n_components):
ax.annotate("'

, xXy=(pca.components .T[[i],1],pca.components .T[[i],2])

, xytext=(0,0)

, arrowprops=dict(arrowstyle="->"
, linewidth=0.7
, color = colors[i]
)

)

texts = [plt.text(pca.components .T[[i],1]-0.03,pca.components .T[[i],2], atributos[i],
color=colors[i]) for i in range (@, n_components)]
adjust_text(texts)

ax.set_xlabel('PC2') # Add an x-label to the axes.
ax.set_ylabel('PC3") # Add a y-label to the axes.

Clusterizacéo

Dendrograma - 4 e 6 Clusters

import scipy.cluster.hierarchy as sch

cut_line = 9 # 4 clusters
# cut_Line = 7.5 # 6 clusters

fig = plt.figure(figsize=(12,12))

# ax = fig.add _subplot(221)
# dendogram = sch.dendrogram(sch.linkage(comp_princ[:,:3], method = 'ward'))#, labels =
Labels)

ax = fig.add_subplot(221)
sch.dendrogram(sch.linkage(comp_princ, method = 'ward')
# , truncate _mode='lastp'

, pb=20

, Show_Lleaf counts=False

, Show_contracted=True

, leaf _rotation=90.

, leaf _font_size=12.
, color_threshold=21
, ho_labels=True)
plt.title('Clustering Hierdrquico\nDendrograma Completo')

H R R HR



plt.xlabel('Observacdes")
plt.ylabel('Distancia (D)")
plt.axhline(y=cut_line, color="k', linestyle="--")

ax = fig.add_subplot(222)

sch.dendrogram(sch.linkage(comp_princ, method = ‘ward')
, truncate_mode="'lastp’
» P=20

# , Show Lleaf counts=False

# , Show_contracted=True

, leaf_rotation=90.

, leaf_font_size=9

, color_threshold=cut_line

, labels = obs_index)
plt.title('Clustering Hierdrquico\nDendrograma Truncado em D = {@}'.format(cut_line))
plt.xlabel('Observag¢des', fontsize = 10)
plt.ylabel('Distancia (D)")

plt.show()

Ultimos n agrupamentos

In [ ]:

import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import pdist
np.set printoptions(precision=5, suppress=True)

Z = sch.linkage(comp_princ, method="ward")
n = 20

# ¢ = sch.cophenet(Z, pdist(comp princ))
# cC

Z[-n:, 2]

Aplicacdo de codigo de clusterizagdo

In [ ]:
from sklearn.cluster import AgglomerativeClustering
# n _clusters = 6
hc_4 = AgglomerativeClustering(4, affinity = 'euclidean', linkage = 'ward")
y_hc_4 = hc_4.fit_predict(comp_princ)
y _hc 4
# comp_princ
# df
# hc_6 = AgglomerativeClustering(6, affinity = 'euclidean', Llinkage = 'ward')
# y hc 6 = hc 6.fit predict(comp_princ)
# y_hc_6



Scatter Plot com Detalhes dos Clusters (4 Clusters)

In [ ]:

fig = plt.figure(figsize=(15,12))
fig.tight_layout(pad=5)

# 4 Clusters

n_clusters = 4

y_hc = y_hc_4

# dic_HC 4 = {6: "m", 1: "r", 2: "c", 3: "g",}
colors_hc 4 = ['m', 'r', 'c', 'g']

# # # 6 Clusters

# n_clusters = 6

#y hc =y hc 6

# colors = ['r', 'g', 'y', 'm', 'b', 'c']
# fig.suptitle('Clustering Hierdrquico -

+ str(n_clusters) + ' Clusters')

ax = fig.add_subplot(221, projection = '3d")
for i in range(©, n_clusters):

ax.scatter(comp_princ[y _hc == i, 9]
, comp_princ[y hc == 1i, 1]
, comp_princ[y_hc == i, 2]

, S =150, c = colors_hc_4[i]

, label = 'Cluster ' + str(i+l))
#ax.set_title('Tridimensional Plot PC1xPC2xPC3')
ax.set xlabel('PC1")
ax.set_ylabel('PC2")
ax.set_zlabel('PC3")
ax.legend(bbox_to_anchor=(2.25, 1), loc="upper left'")

# for 1 1in range(len(comp_princ)):
# ax.text(comp_princ[i,0],comp_princ[i,1], comp_princ[i,2]
# , '%s' % (str(i+l1)), size=10, color='k")

ax = fig.add_subplot(222)
for i in range (0, n_clusters):
ax.scatter(comp_princ[y_hc==1i, 0]
, comp_princ[y_hc==1i, 1]
, S =50
, ¢ = colors_hc_4[i])
ax.set_title('PC1xPC2 Plot')
ax.set_xlabel('PC1") # Add an x-label to the axes.
ax.set_ylabel('PC2') # Add a y-Llabel to the axes.

# for 1 in range(len(comp_princ)):
# ax.text(comp_princ[i,0],comp princ[i,1], '%s' % (str(i+1))
# , Ssize=10, color='R', ha = 'center', va = 'center')

ax = fig.add_subplot(223)
for i in range (0, n_clusters):
ax.scatter(comp_princ[y_hc==1i, 0]
, comp_princ[y_hc==1i, 2]
, S = 50
, € = colors_hc_4[i])
ax.set_title('PC1xPC3 Plot")
ax.set_xlabel('PC1') # Add an x-label to the axes.
ax.set_ylabel('PC3") # Add a y-label to the axes.
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# for 1 in range(len(comp_princ)):
# ax.text(comp_princ[i,0],comp_princ[i,2], '%s' % (str(i+l1))
# , Ssize=10, color='R', ha = 'center’', va = 'center')

ax = fig.add _subplot(224)
for i in range (@, n_clusters):
ax.scatter(comp_princ[y_hc==i, 1]
, comp_princ[y_hc==1i, 2]
, S =50
, ¢ = colors_hc _4[i])
ax.set_title('PC2xPC3 Plot")
ax.set_xlabel('PC2"') # Add an x-label to the axes.
ax.set_ylabel('PC3') # Add a y-label to the axes.

for i in range(len(comp_princ)):
ax.text(comp_princ[i,1],comp_princ[i,2], '%s' % (str(i+1))
, size=8, color='R', ha = 'left', va = 'center’)

H B R

Scatter Plot com Detalhes dos Clusters (6 Clusters)
In [ ]:

fig = plt.figure(figsize=(15,12))
fig.tight_layout(pad=5)

# 4 Clusters

n_clusters = 6

y_hc =y hc_6

# dic HC 4 = {6: "m", 1: "r", 2: "c", 3: "g",}
colors_hc 6 = ['r', 'g', 'y', 'm', 'b', 'c']

# # # 6 Clusters

# n _clusters = 6

#y hc =y hc 6

# colors = ['r', 'g', 'y', 'm', 'b', 'c']

# fig.suptitle('Clustering Hierdrquico - ' + str(n_clusters) + ' Clusters’)

ax = fig.add_subplot(221, projection = '3d")
for i in range(©, n_clusters):

ax.scatter(comp_princ[y_hc == i, 9]
, comp_princ[y hc == i, 1]
, comp_princ[y_hc == i, 2]

, S =150, c = colors_hc_6[1]
, label = 'Cluster ' + str(i+l))
#ax.set title('Tridimensional Plot PCI1xPC2xPC3")
ax.set_xlabel('PC1")
ax.set_ylabel('PC2")
ax.set_zlabel('PC3")
ax.legend(bbox_to_anchor=(2.25, 1), loc="upper left")

# for 1 in range(len(comp_princ)):
ax.text(comp_princ[i,@],comp _princ[i,1], comp princ[i,2]
# , '%s' % (str(i+l)), size=10, color='kR")

H*



ax = fig.add_subplot(222)
for i in range (0, n_clusters):
ax.scatter(comp_princ[y_hc==1i, 0]
, comp_princ[y_hc==1i, 1]
, S =50
, € = colors_hc_6[i])
ax.set title('PC1xPC2 Plot')
ax.set_xlabel('PC1') # Add an x-label to the axes.
ax.set_ylabel('PC2") # Add a y-Label to the axes.

# for 1 in range(len(comp_princ)):
# ax.text(comp _princ[i,@],comp princ[i,1], '%s' % (str(i+1))
# , Size=10, color='k', ha = 'center', va = 'center')

ax = fig.add_subplot(223)
for i in range (@, n_clusters):
ax.scatter(comp_princ[y_hc==1i, 0]
, comp_princ[y_hc==1i, 2]
, S =50
, ¢ = colors_hc_6[i])
ax.set_title('PC1xPC3 Plot')
ax.set xlabel('PCl') # Add an x-label to the axes.
ax.set_ylabel('PC3") # Add a y-lLabel to the axes.

# for 1 in range(len(comp_princ)):
# ax.text(comp_princ[i,0],comp _princ[i,2], '%s' % (str(i+l1))
# , Size=10, color='k', ha = 'center', va = 'center')

###t# Scatter Plot com Detalhes dos Clusters (4 e 6 Clusters)
ax = fig.add_subplot(224)
for i in range (0, n_clusters):
ax.scatter(comp_princ[y_hc==1i, 1]
, comp_princ[y_hc==1i, 2]
, S =50
, ¢ = colors_hc_6[i])
ax.set_title('PC2xPC3 Plot")
ax.set_xlabel('PC2"') # Add an x-Llabel to the axes.
ax.set_ylabel('PC3"') # Add a y-lLabel to the axes.

# for 1 in range(len(comp _princ)):

# ax.text(comp_princ[i,1],comp princ[i,2], '%s' % (str(i+l1))
# , Size=8, color="kR', ha = 'left', va = 'center’)

In [ ]:

# df_clusters = np.c_[df,y hc]
# pd.DataFrame(df_clusters)

# df clusters = pd.concat([df, pd.DataFrame(y_hc)], axis=1)
# df clusters

df_hc_4 = pd.DataFrame(y_hc_4, columns=["HC_4"])
df_hc_6 = pd.DataFrame(y_hc_6, columns=["HC_6"])
df_clusters = pd.concat([df, df _hc_4, df _hc_6], axis=1)

df_clusters.head()
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BoxPlot com Detalhes dos Clusters (4 Clusters)

dic HC 4 = {@6: "m", 1: "r", 2: "c", 3: "g",}
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(16, 20))

i=0 # Ra e Rz
# 1=2 # Sa e Sz
# 1=4 # Ssk e Sku

sns.set_context("paper", font_scale=1.5,
# rc={"font.size":9, "axes.titlesize":10, "axes. labelsize":5}

)
sns.boxplot(ax = axes[0,0], x=df_clusters["HC_4"], y=df_clusters[atributos[i]]

, palette=dic_HC 4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[0,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+1]]

, palette=dic_HC_ 4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[1,0], x=df_clusters["HC 4"], y=df clusters[atributos[i+2]]

, palette=dic HC 4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[1,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+3]]

, palette=dic_HC 4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[2,0], x=df_clusters["HC 4"], y=df clusters[atributos[i+4]]

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[2,1], x=df_clusters["HC_4"], y=df_clusters[atributos[i+5]]

, palette=dic_HC_4, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

dic_HC_6 - {0: llr‘ll’ 1: Ilgll’ 2: llyll, 3: llmll, 4: lIbII, 5: "C"}
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(16, 20))

i=0 # Ra e Rz
# 1=2 # Sa e Sz
# 1=4 # Ssk e Sku

sns.set context("paper", font scale=1.5,
# rc={"font.size":9, "axes.titlesize":10, "axes. labelsize":5}

)
sns.boxplot(ax = axes[0,0], x=df_clusters["HC_6"], y=df_clusters[atributos[i]]

, palette=dic_HC 6, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[0,1], x=df_clusters["HC 6"], y=df clusters[atributos[i+1]]

, palette=dic_HC 6, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[1,0], x=df_clusters["HC_6"], y=df_clusters[atributos[i+2]]

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[1,1], x=df_clusters["HC 6"], y=df clusters[atributos[i+3]]

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec



olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[2,0], x=df_clusters["HC 6"], y=df clusters[atributos[i+4]]

, palette=dic_HC_6, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

sns.boxplot(ax = axes[2,1], x=df_clusters["HC 6"], y=df_clusters[atributos[i+5]]

, palette=dic_HC 6, showmeans = True, meanprops={"marker":"x", "markeredgec
olor":"black", "markersize":"10"})

In [ ]:

pd.crosstab(df_clusters["HC_4"], df_clusters["Categoria"])

In [ ]:

pd.crosstab(df_clusters["HC _6"], df_clusters["Categoria"])

In [ ]:

def coding(col, codeDict):
colCoded = pd.Series(col, copy=True)
for key, value in codeDict.items():
colCoded.replace(key, value, inplace=True)
return colCoded

depara_y_hc_4 = coding(y_hc_4, {0:"Cluster 1", 1:"Cluster 2", 2:"Cluster 3", 3:"Cluster
4"})

pd.concat([pd.Series(y_hc_4),depara_y _hc_4], axis=1)

pd.value_counts(y_hc_4)
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